
Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron loss
4. SVM loss

• General recipe: Data loss, regularization
• Multi-class classification

1. Multi-class perceptron
2. Multi-class SVM
3. Softmax



Recall: The shape of logistic loss
! ", $%, &% = − log, &%"-$%

Figure source&%"-$%
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http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf


Perceptron
• Let’s define the perceptron hinge loss:

! ", $%, &% = max 0,−&%"-$%
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Perceptron
• Let’s define the perceptron hinge loss:

! ", $%, &% = max 0,−&%"-$%

• Training: find " that minimizes

./ " = 1
12%34

5
! ", $%, &% = 1

12%34

5
max 0,−&%"-$%

• Once again, there is no closed-form solution, so let’s go 
straight to SGD



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

! ", $%, &% = max 0,−&%"-$%
(Strictly speaking, this loss is not differentiable, so we need to 
find a sub-gradient)
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Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

! ", $%, &% = max 0,−&%"-$%
∇! ", $%, &% = −/[&%"-$% < 0]&%$%

3
34max 0, 5 = /[5 > 0]
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Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

! ", $%, &% = max 0,−&%"-$%
∇! ", $%, &% = −/[&%"-$% < 0]&%$%

• We also used the chain rule: 34 35 6
7 = 347 35 6 357(6)



Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss: 

! ", $%, &% = max 0,−&%"-$%
∇! ", $%, &% = −/[&%"-$% < 0]&%$%

• Corresponding SGD update (" ← " − 4 ∇! ", $%, &% ):
" ← " + 4 /[&%"-$% < 0]&%$%

• If $% is correctly classified: do nothing
• If $% is incorrectly classified: " ← " + 4 &%$%



Understanding the perceptron update rule
• Perceptron update rule: If !" ≠ sgn(()*") then update weights:

( ← ( + . !"*"
• The raw response of the classifier changes to

()*" + . !" *" /

• How does the response change if !" = 1? 
• The response ()*" is initially negative and will be increased

• How does the response change if !" = −1? 
• The response ()*" is initially positive and will be decreased



Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss
4. Support vector machine (SVM) loss



• When the data is linearly separable, which of the many 
possible solutions should we prefer?

• Perceptron training algorithm: 
no special criterion, solution depends 
on initialization

Support vector machines



• When the data is linearly separable, which of the many 
possible solutions should we prefer?

• Perceptron training algorithm: 
no special criterion, solution depends 
on initialization

• SVM criterion: maximize the margin, 
or distance between the hyperplane 
and the closest training example

Support vector machines

Margin

Support 
vectors

Separating 
hyperplane



• We want to maximize the margin, or distance between the 
hyperplane !"# = 0 and the closest training example #&

• This distance is given by  |(
)*+|
(

(for derivation see, e.g., here)
• Assuming the data is linearly 

separable, we can fix the scale of !
so that ,-!"#- = 1 for support vectors 
and ,-!"#- ≥ 1 for all other points 

• Then the margin is given by 0
(

Finding the maximum margin hyperplane

https://math.stackexchange.com/questions/1210545/distance-from-a-point-to-a-hyperplane


Finding the maximum margin hyperplane

• We want to maximize margin !
" while correctly classifying all 

training data: #$%&'$ ≥ 1
• Equivalent problem:

min"
1
2 % . s. t. #$%&'$ ≥ 1 ∀3

• This is a quadratic objective with linear constraints: convex 
optimization problem, global optimum can be found using 
well-studied methods



“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin 

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin 

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min$
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“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min$
%
2 ' ( + *

+,-

.
max[0,1 −6+'78+]

+1

-1
0

6+'78+

Incorrectly 
classified

Correctly 
classified

(1,0)

(0,1)

Hinge loss

Recall hinge loss used by the 
perceptron update algorithm!



“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min$
%
2 ' ( + *

+,-

.
max[0,1 −6+'78+]

Maximize margin –
a.k.a. regularization

Minimize misclassification loss



SGD update for SVM

! ", $%, &% = (
)* " ) +max[0, 1 − &%"3$%]

∇! ", $%, &% = (
*" − 6[&%"

3$% < 1]&%$%
Recall: 8

89max 0, : = 6[: > 0]



SGD update for SVM

! ", $%, &% = (
)* " ) +max[0, 1 − &%"3$%]

∇! ", $%, &% = (
*" − 6[&%"

3$% < 1]&%$%

• SGD update:
• If &%"3$% ≥ 1: " ← " −: (*"
• If &%"3$% < 1: " ← " + : &%$% − (

*"

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf


Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization



General recipe
• Find parameters ! that minimize the sum of a regularization 

loss and a data loss:

"# ! = %& ! + 1
)*
+,-

.
/(!, 2+, 3+)

empirical loss data lossregularization

L2 regularization: 

&(!) = 1
2 ! 66



Closer look at L2 regularization

• Regularized objective: !"($) = '
( $ (

( + ∑+,-. /($, 1+, 2+)
• Gradient of objective: 

∇!"($) = 4$ +5
+,-

.
∇/($, 1+, 2+)

• SGD update:

$ ← $ − 8 4
9$ + ∇/ $, 1+, 2+

$ ← 1 − 849 $ − 8∇/ $, 1+, 2+

• Interpretation: weight decay



General recipe
• Find parameters ! that minimize the sum of a regularization 

loss and a data loss:

"# ! = %& ! + 1
)*
+,-

.
/(!, 2+, 3+)

empirical loss data lossregularization

L2 regularization: 

&(!) = 1
2 ! 66

L1 regularization: 
&(!) = ! -



Closer look at L1 regularization
• Regularized objective:

!" # = % # & +(
)*&

+
, #, .), /)

= %(
0
#(0) +(

)*&

+
, #, .), /)

• Gradient: ∇!" # = % sgn(#) + ∑)*&+ ∇,(#, .), /))
(here sgn is an elementwise function)

• SGD update:

# ← # − :%; sgn # − :∇, #, .), /)
• Interpretation: encouraging sparsity



Linear classifiers: Outline

• Examples of classification models: nearest neighbor, linear

• Empirical loss minimization framework

• Linear classification models

1. Linear regression

2. Logistic regression

3. Perceptron training algorithm

4. Support vector machines

• General recipe: data loss, regularization

• Multi-class classification

1. Multi-class perceptron 

2. Multi-class SVM 

3. Softmax



One-vs-all classification
• Let ! ∈ {1,… , '}
• Learn ' scoring functions )*, )+, … , ),
• Classify - to class .! = argmax5 )5(-)
• Let’s start with multi-class perceptrons:

)5 - = 859-

Inputs
Perceptrons 

w/ weights 85

Argmax



Multi-class perceptrons
• Multi-class perceptrons: !" # = %"&#
• Let ' be the matrix with rows %"
• What loss should we use for multi-class classification?

Figure source: Stanford 231n

http://cs231n.github.io/linear-classify/


Multi-class perceptrons
• Multi-class perceptrons: !" # = %"&#
• Let ' be the matrix with rows %"
• What loss should we use for multi-class classification?
• For (#), +)), let the loss be the sum of hinge losses associated 

with predictions for all incorrect classes:

- ', #), +) = .
"/01

max[0,%"&#) − %01& #)]
Score for correct class (+)) 
has to be greater than the 

score for the incorrect class (9)



Multi-class perceptrons

! ", $%, &% = (
)*+,

max[0,2)3$% − 2+,3 $%]

• Gradient w.r.t. 2+,:
− (
)*+,

6 [2)3$% > 2+,3 $%]$%

Recall: 889max 0, : = 6[: > 0]



Multi-class perceptrons

! ", $%, &% = (
)*+,

max[0,2)3$% − 2+,3 $%]

• Gradient w.r.t. 2+,:
− (
)*+,

6 [2)3$% > 2+,3 $%]$%

• Gradient w.r.t. 2), 8 ≠ &%:
6[2)3$% > 2+,3 $%]$%

• Update rule: for each 8 s.t. 2)3$% > 2+,3 $%:
2+, ← 2+, + <$%
2) ← 2) − <$%



Multi-class perceptrons
• Update rule: for each ! s.t. "#$%& > "()$ %&:

"() ← "() + ,%&
"# ← "# − ,%&

• Is this equivalent to training . independent one-vs-all 
classifiers?

Cat score:   65.1

Dog score:  101.4

Ship score:  24.9

Independent

Do nothing

Decrease 

Decrease

Multi-class

Increase

Decrease

Do nothing



Multi-class SVM

• Recall single-class SVM loss: 

! ", $%, &% = (
)* " ) +max[0, 1 − &%"3$%]

• Generalization to multi-class:

! 5, $%, &% = (
)* 5 ) + ∑789: max[0, 1 − "9:3 $% + "73$%]

Score for correct class – score for incorrect class

(1,0)

(0,1)

Score for correct class has to be 
greater than the score for the incorrect 

class by at least a margin of 1

Source: Stanford 231n

http://cs231n.github.io/linear-classify/


Multi-class SVM

! ", $%, &% = (
)* " ) + ∑-./0 max[0, 1 − 8/09 $% + 8-9$%]

• Gradient w.r.t. 8/0:
;
<8/0 − =

-./0
> 8/09 $% − 8-9$% < 1 $%

• Gradient w.r.t. 8-, @ ≠ &%:
;
<8- + >[8/0

9 $% − 8-9$% < 1]$%
• Update rule (almost* equivalent to above):

• For each @ ≠ &% s.t. 8/09 $% − 8-9$% < 1: 8/0 ← 8/0 + C$%, 8- ← 8- − C$%
• For @ = 1,… , E: 8- ← 1 − C (* 8-



Announcements
• Assignment 1 is out, due Tuesday, February 14
• Quiz 1 will be available 9AM this Thursday, February 9, 

through 9AM Monday, February 13



Review: Three ways to think about linear classifiers

!" # = %# + '

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture03.pdf


Review: General recipe for training classifiers
• Find parameters ! that minimize the sum of a regularization 

loss and a data loss:

"# ! = %& ! + 1
)*
+,-

.
/(!, 2+, 3+)

empirical loss data lossregularization

L2 regularization: 

&(!) = 1
2 ! 66

L1 regularization: 
&(!) = ! -



Last week: Linear classifiers
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification

• Multi-class perceptrons
• Multi-class SVM
• Softmax



Softmax
• We want to squash the vector of responses !",… , !% into a 

vector of “probabilities”:

softmax !",… , !% = exp(!")
∑3 exp(!3)

, … , exp(!4)∑3 exp(!3)

• The outputs are between 0 and 1 and sum to 1
• If one of the inputs (logits) is much larger than the others, 

then the corresponding softmax value will be close to 1 and 
others will be close to 0



Softmax and sigmoid
• For two classes:

softmax (,−( = exp(()
exp(() + exp(−() ,

exp(−()
exp ( + exp(−()

= 1
12345(678) ,

1
345 78 21

= 9 2( , 9(−2()

• Thus, softmax is the generalization of sigmoid for more than 
two classes



Cross-entropy loss
• It is natural to use negative log likelihood loss with softmax:

! ", $%, &% = − log,- &% $% = −log exp 1234 $%
∑6 exp 164$%

• This is also the cross-entropy between the “empirical” distribution 
7, 8 $% = 9[8 = &%] and “estimated” distribution ,-(8|$%):

−?
@
7, 8 $% log,-(8|$%)

Empirical distribution 7, 8 $% Estimated distribution ,-(8|$%)

,(correct class | $%) = 1

,(incorrect class | $%) = 0



SVM loss vs. cross-entropy loss

Source: Stanford 231n

Correct class is the third one 
(blue)

http://cs231n.github.io/linear-classify/


SGD with cross-entropy loss

! ", $%, &% = − log,- &% $% = −log exp 1234 $%
∑6 exp 164$%

= −1234 $% + log 8
6
exp 164$%

• Gradient w.r.t. 123:

−$% +
exp 1234 $% $%
∑6 exp 164$%

= (,- &% $% − 1)$%

• Gradient w.r.t. 1<, = ≠ &%:
exp 1<4$% $%
∑6 exp 164$%

= ,- = $% $%



SGD with cross-entropy loss
• Gradient w.r.t. !"#: (%& '( )( − 1))(

• Gradient w.r.t. !-, . ≠ '(: %& . )( )(

• Update rule: 
• For '(:

!"# ← !"# + 3 1 − %& '( )( )(
• For . ≠ '(:

!- ← !- − 3%& . )( )(



Softmax trick: Avoiding overflow
• Exponentiated values exp $% can become very large and 

cause overflow
• Note that adding the same constant to all softmax inputs 

(logits) does not change the output of the softmax:

exp $%
∑' exp $'

= ) exp $%
∑' ) exp $'

= exp $% + log)
∑' exp $' + log)

• Then we can let log) = −max' $' (i.e., make largest input to 
softmax be 0)



Softmax trick: Temperature scaling
• Suppose we divide every input to the softmax by the same 

constant !:

softmax )*,… , )-; ! = exp()*/!)
∑6 exp()6/!)

,… , exp()7/!)∑6 exp()6/!)
• Prior to normalization, each entry exp()*) is raised to the power 1/!
• If ! is close to 0, the largest entry will 

dominate and output distribution will 
approach one-hot

• If ! is high, output distribution will 
approach uniform

! = 10

! = 0.1

Source

https://www.mathway.com/Algebra


Softmax trick: Temperature scaling
Low temperature:

More concentrated 
distribution

Higher temperature:
More uniform 
distribution

Figure source

https://www.researchgate.net/figure/An-example-of-categorical-probability-distributions-of-high-temperature-softmax-output_fig1_325016605


Softmax trick: Label smoothing
• Recall: cross-entropy loss measures the difference between the 

“observed” label distribution !" # $% and “estimated” distribution 
"&(#|$%):

−+
,
!" # $% log"&(#|$%)

Empirical distribution !" # $% Estimated distribution "&(#|$%)

"(correct class | $%) = 1

"(incorrect class | $%) = 0

“Hard” prediction targets



Softmax trick: Label smoothing
• Recall: cross-entropy loss measures the difference between the 

“observed” label distribution !" # $% and “estimated” distribution 
"&(#|$%):

−+
,
!" # $% log"&(#|$%)

Empirical distribution !" # $% Estimated distribution "&(#|$%)

"(correct class | $%) = 1 − 2

"(incorrect class | $%) = 3
456

“Soft” prediction targets



Softmax trick: Label smoothing
• When using softmax loss, replace hard 1 and 0 prediction 

targets with “soft” targets of 1 − # and $
%&'

• Why is this a good idea? 
• A form of regularization to avoid overly confident predictions, 

account for label noise


