
Neural network training: The basics and beyond

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive optimization methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: averaging predictions, ensembles
• Transfer learning, distillation

Mini-batch SGD

Caspar David Friedrich, Wanderer
above a sea of fog, 1817

https://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
https://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

Mini-batch SGD
• Iterate over epochs

• Group data into mini-batches of size 𝑏
• Compute gradient of the loss for the mini-batch 𝑥!, 𝑦! , … , (𝑥", 𝑦"):

∇#𝐿 =
1
𝑏
'
!"#

$

∇𝑙(𝑤, 𝑥! , 𝑦!)

• Update parameters:
𝑤 ← 𝑤 − 𝜂∇#𝐿

• Check for convergence, decide whether to decay learning rate

• What are the hyperparameters?
• Mini-batch size, learning rate decay schedule, deciding when to stop

Setting the mini-batch size
• Smaller mini-batches: less memory overhead, less

parallelizable, more gradient noise (which could work as
regularization – see, e.g., Keskar et al., 2017)

• Larger mini-batches: more expensive and less frequent
updates, lower gradient variance, more parallelizable.
Can be made to work well with good choices of learning rate
and other aspects of optimization (Goyal et al., 2018)

https://arxiv.org/pdf/1609.04836
https://arxiv.org/pdf/1706.02677.pdf

Setting the learning rate

Setting the learning rate

Figure source

Too high Too low

Want: good decay schedule

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Setting the learning rate

Figure source

Too high Too low

Want: good decay schedule

Source: Stanford CS231n

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818
http://cs231n.github.io/neural-networks-3/

Learning rate decay
• Decay formulas

• Exponential: 𝜂% = 𝜂&𝑒'(%, where 𝜂& and 𝑘 are hyperparameters, 𝑡 is
the iteration or epoch number

• Inverse: 𝜂% = 𝜂&/(1 + 𝑘𝑡)
• Inverse sqrt: 𝜂% = 𝜂&/ 𝑡
• Linear: 𝜂% = 𝜂&(1 − 𝑡/𝑇), where T is the total number of epochs

• Cosine: 𝜂% =
#
)
𝜂&(1 + cos(𝑡𝜋/𝑇))

Learning rate decay
• Decay formulas
• Most common in practice:

• Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

• Manual: watch validation error and reduce learning rate whenever it
stops improving
• “Patience” hyperparameter: number of epochs without improvement

before reducing learning rate

A typical phenomenon

Possible explanation

Image sourceImage source: Stanford CS231n

http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Learning rate decay
• Decay formulas
• Most common in practice:

• Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

• Manual: watch validation error and reduce learning rate whenever it
stops improving
• “Patience” hyperparameter: number of epochs without improvement

before reducing learning rate

• Warmup: train with a low learning rate for a first few epochs,
or linearly increase learning rate before transitioning to
normal decay schedule (Goyal et al., 2018)

https://arxiv.org/pdf/1706.02677.pdf

Diagnosing learning curves: Obvious problems

Not training
Bug in update calculation?

Error increasing
Bug in update calculation?

Get NaNs in the loss after a number of iterations:
Numerical instability

Weird cyclical patterns in loss:
Data not shuffled

Shuffling off

Shuffling on

Source: Stanford CS231n

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

Diagnosing learning curves: Subtler behaviors

Source: Stanford CS231n

Not converged yet
Keep training, possibly increase learning rate

Slow start
Bad initialization?

Possible overfitting Definite overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

When to stop training?
• Monitor validation error to decide when to stop

• “Patience” hyperparameter: number of epochs without improvement
before stopping

• Early stopping can be viewed as a kind of regularization

Figure from Deep Learning Book

https://www.deeplearningbook.org/contents/regularization.html

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive optimization methods: SGD with momentum, RMSProp, Adam

Where does SGD run into trouble?

Where does SGD run into trouble?

Local minima Saddle points

Poor conditioning

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

• Goal: move faster in directions with consistent gradient, avoid
oscillating in directions with large but inconsistent gradients

SGD with momentum

Standard SGD

SGD with momentum Image source

http://ruder.io/optimizing-gradient-descent/index.html

SGD with momentum
• Introduce a “momentum” variable 𝑚 and associated “friction”

coefficient 𝛽:
𝑚 ← 𝛽𝑚 − 𝜂∇𝐿
𝑤 ← 𝑤 + 𝑚

• Typically start with 𝛽 = 0.5, gradually increase over time

𝑤

𝛽𝑚

−𝜂∇𝐿

Image source
gradient step

momentum
step

actual step

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture04.pdf

Adagrad: Adaptive per-parameter learning rates
• Keep track of history of gradient magnitudes, scale the learning

rate for each parameter based on this history
• For each dimension 𝑘 of the weight vector:

𝑣(') ← 𝑣(') +
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖

𝜕𝐿
𝜕𝑤(')

• Parameters with small gradients get large updates and vice versa
• Problem: long-ago gradient magnitudes are not “forgotten” so learning

rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

Update running sum of squared
magnitudes of gradient w.r.t. 𝑘th
weight
Scale learning rate for 𝑘th
weight by inverse of the
magnitude, update 𝑘th weight

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp
• Introduce decay factor 𝛽 (typically ≥ 0.9) to downweight past

history exponentially:

𝑣(') ← 𝛽𝑣(') + (1 − 𝛽)
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖

𝜕𝐿
𝜕𝑤(')

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam: Combine RMSProp with momentum
• Update momentum:

𝑚 ← 𝛽)𝑚 + 1 − 𝛽) ∇𝐿
• For each dimension 𝑘 of the weight vector:

𝑣(') ← 𝛽(𝑣(') + (1 − 𝛽()
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖
𝑚(')

• Full algorithm includes bias correction to account for 𝑚 and 𝑣
starting at 0: A𝑚 = +

#',!
", B𝑣 =

-
#',#

" (𝑡 is the timestep)

• Default parameters from paper are reputed to work well for many
models: 𝛽) = 0.9, 𝛽(= 0.999, 𝜂 = 1𝑒 − 3, 𝜖 = 1𝑒 − 8

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

https://arxiv.org/abs/1412.6980

Which optimizer to use in practice?
• Adaptive methods tend to reduce initial training error faster

than SGD and are “safer”
• Andrej Karpathy: “In the early stages of setting baselines I like to use

Adam with a learning rate of 3e-4. In my experience Adam is much
more forgiving to hyperparameters, including a bad learning rate. For
ConvNets a well-tuned SGD will almost always slightly outperform
Adam, but the optimal learning rate region is much more narrow and
problem-specific.”

• Use Adam early in training, switch to SGD for later epochs?

http://karpathy.github.io/2019/04/25/recipe/

Which optimizer to use in practice?
• Adaptive methods tend to reduce initial training error faster

than SGD and are “safer”
• Some literature has reported problems with adaptive

methods, such as failing to converge or generalizing poorly
(Wilson et al. 2017, Reddi et al. 2018)

• More recent comparative study (Schmidt et al., 2021):
“We observe that evaluating multiple optimizers with default
parameters works approximately as well as tuning the
hyperparameters of a single, fixed optimizer.”

https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
https://openreview.net/forum?id=ryQu7f-RZ
https://arxiv.org/pdf/2007.01547.pdf

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops

Image source Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations

Image source

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations
• Other: add noise, compression artifacts, lens distortions, etc.
• Automatic augmentation strategies: AutoAugment, RandAugment

https://arxiv.org/pdf/1805.09501.pdf
https://arxiv.org/pdf/1909.13719.pdf

Data preprocessing
• Zero centering

• Subtract mean image – all input images need to have the same
resolution

• Subtract per-channel means – images don’t need to have the same
resolution

• Optional: rescaling – divide each value by (per-pixel or per-
channel) standard deviation

• Be sure to apply the same transformation at training and test
time!
• Save training set statistics and apply to test data

The importance of preprocessing and initialization

𝑥(#)

𝑥())

• Consider the behavior of a linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

ℎ > 0

ℎ < 0

Review: Backward pass for ReLU

𝜕𝑒
𝜕𝑥
	=

𝜕𝑒
𝜕ℎ
	
𝜕ℎ
𝜕𝑥

𝑥 ℎ
IJ
IK

𝑓(𝑥) = max(0, 𝑥)

𝜕ℎ
𝜕𝑥

= 𝕀[𝑥 > 0]

𝜕𝑒
𝜕𝑥
	=

𝜕𝑒
𝜕ℎ
𝕀 𝑥 > 0

The importance of preprocessing and initialization

𝑥(#)

𝑥())

Linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

• What happens in this case?
• Nonlinearity plays no role
• Upstream gradients can

still back-propagate

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

The importance of preprocessing and initialization

𝑥(#)

𝑥())

Linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

• What happens in this case?
• All inputs to ReLU are

negative
• No gradients propagate

back – dead ReLU!

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

The importance of preprocessing and initialization

𝑥(#)

𝑥())

• Suppose all data is positive
• Linear perceptron with 𝑏 = 0, initially all points are misclassified
• Recall the perceptron update: 𝑤 ← 𝑤 + 𝜂𝑦+𝑥+

• Updates are all positive or all negative along individual dimensions!

𝑦 = −1

𝑦 = 1

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture09.pdf

The importance of preprocessing and initialization
• What’s wrong with initializing all weights to the same number

(e.g., zero)?

Weight initialization
• Typically: initialize to random values sampled from zero-

mean Gaussian: 𝑤	~	𝒩(0, 𝜎()
• Standard deviation matters!
• Key idea: avoid reducing or amplifying the variance of layer

responses, which would lead to vanishing or exploding gradients
• Common heuristics:

• Xavier initialization: 𝜎) = 1/𝑛01 or 𝜎) 	= 2/(𝑛01 + 𝑛234),
where 𝑛01 and 𝑛234	are the numbers of inputs and outputs to a layer
(Glorot and Bengio, 2010)

• Kaiming initialization (goes with ReLU): 𝜎) 	= 2/𝑛01 (He et al., 2015)
• Initializing biases: just set them to 0

More details: http://cs231n.github.io/neural-networks-2/#init

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/

Batch normalization
• The authors’ intuition

Image source, via Prajit Ramachandran

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://img.rt.com/files/2016.10/original/57f28764c36188fc0b8b45e8.jpg
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization
• Key idea: shifting and rescaling are differentiable operations,

so the network can learn how to best normalize the data
• Statistics of activations (outputs) from a given layer across

the dataset can be approximated by statistics from a mini-
batch

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

Why?

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

At test time (usually):

training set

training set

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization
• Common configuration: insert BN layers right after conv or FC

layers, before ReLU nonlinearity (but this is purely empirical)

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

conv

BN

ReLU

conv

BN

ReLU

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization
• Benefits

• Prevents exploding and vanishing gradients
• Keeps most activations away from saturation regions of non-linearities
• Accelerates convergence of training
• Makes training more robust w.r.t. hyperparameter choice, initialization

• Pitfalls
• Behavior depends on composition of mini-batches, can lead to hard-to-

catch bugs if there is a mismatch between training and test regime
(example)

• Doesn’t work well for small mini-batch sizes
• Cannot be used for certain types of models (recurrent models,

transformers)

https://www.alexirpan.com/2017/04/26/perils-batch-norm.html

Other types of normalization
• Layer normalization (Ba et al., 2016)
• Instance normalization (Ulyanov et al., 2017)
• Group normalization (Wu and He, 2018)
• Weight normalization (Salimans et al., 2016)

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization

Regularization
• Techniques for controlling the capacity of a neural network to

prevent overfitting – short of explicit reduction of the number
of parameters

• Recall: classic regularization: L1, L2

Image source

http://laid.delanover.com/difference-between-l1-and-l2-regularization-implementation-and-visualization-in-tensorflow/

Weight decay
• Generic optimization step:
𝐿 𝑤 = 𝐿,-.- 𝑤 + 𝐿/01 𝑤
𝑔2 = ∇𝐿 𝑤2
𝑠2 = optimizer 𝑔2
𝑤23) = 𝑤2 − 𝜂𝑠2

• Optimization with weight decay:
𝐿 𝑤 = 𝐿,-.- 𝑤
𝑔2 = ∇𝐿 𝑤2
𝑠2 = optimizer 𝑔2
𝑤23) = (1 − 𝜂𝜆)𝑤2 − 𝜂𝑠2

𝐿 𝑤 = 𝐿,-.- 𝑤 +
𝜆
2
𝑤 (

𝑔2 = ∇𝐿,-.- 𝑤2 + 𝜆𝑤
𝑤23) 	= 𝑤2 − 𝜂𝑔2
 = 1 − 𝜂𝜆 𝑤2 − 𝜂∇𝐿,-.- 𝑤2

Adapted from J. JohnsonI. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization, ICLR 2019

• SGD with L2 regularization:

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf
https://arxiv.org/pdf/1711.05101.pdf

Other types of regularization
• Adding noise to the inputs

• Recall motivation of max margin criterion
• In simple scenario (linear model, quadratic loss, Gaussian noise),

this is equivalent to weight decay
• Data augmentation is a more general form of this

• Adding noise to the weights
• Label smoothing

• Recall: when using softmax loss, replace hard 1 and 0 prediction
targets with “soft” targets of 1 − 𝜖 and 5

6'#

Dropout
• At training time, in each forward pass, turn off some neurons

with probability 𝑝
• At test time, to have deterministic behavior, multiply output of

neuron by 𝑝

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout
• Intuitions

• Prevent “co-adaptation” of units, increase robustness to noise
• Train implicit ensemble

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Current status of dropout
• Against

• Slows down convergence
• Made redundant by batch normalization or possibly even clashes

with it
• Unnecessary for larger datasets or with sufficient data augmentation

• In favor
• Can still help for certain models and in certain situations: e.g., used

in Wide Residual Networks

https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1801.05134

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: averaging predictions, ensembles

Test time
• Average predictions across multiple crops of test image

• There is a more elegant way to do this with fully convolutional
networks (FCNs)

Test time
• Ensembles: train multiple independent models, then average

their predicted label distributions
• Gives 1-2% improvement in most cases
• Can take multiple snapshots of models obtained during training,

especially if you cycle the learning rate (increase to jump out of local
minima)

G. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

https://openreview.net/pdf?id=BJYwwY9ll

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: ensembles, averaging predictions
• Transfer learning, distillation

How to use a pre-trained network for a new task?
• Strategy 1: Use as feature extractorRemove these layers

Use as off-the-shelf
feature

A. Razavian et al. CNN Features Off-the-Shelf: An Astounding
Baseline for Recognition. CVPR workshops, 2014

https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/html/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/html/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.html

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. CVPR 2015

FC vectors from
pre-trained network

Example: CNNs for image captioning

https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1411.4555

How to use a pre-trained network for a new task?
• Strategy 2: Transfer learningTrain new prediction

layer(s)

Fine-tune

Distillation
1. Train a teacher network on initial labeled dataset
2. Save the softmax outputs the teacher network for each training

example
3. Train a student network with cross-entropy loss using the

softmax outputs of the teacher network as targets

G. Hinton, O. Vinyals, J. Dean. Distilling the knowledge in a neural network. arXiv 2015

data

softmax outputs

student predictions

Image source

https://arxiv.org/pdf/1503.02531.pdf
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Distillation
1. Train a teacher network on initial labeled dataset
2. Save the softmax outputs the teacher network for each training

example
3. Train a student network with cross-entropy loss using the

softmax outputs of the teacher network as targets

• Many uses:
• Compressing a larger model (or even an ensemble) into a smaller one
• “Copying” a black-box teacher model (e.g., network you can only

access via an API)
• Extending a network to additional tasks without “forgetting” old tasks

(Li and Hoiem, 2017)

https://arxiv.org/pdf/1606.09282.pdf

Some take-aways
• Training neural networks is still a black art
• Process requires close “babysitting”
• For many techniques, the reasons why, when, and whether they work are

in active dispute – read everything but don’t trust anything
• It all comes down to (principled) trial and error
• Further reading: A. Karpathy, A recipe for training neural networks

http://karpathy.github.io/2019/04/25/recipe/

More fun reading

http://karpathy.github.io/2022/03/14/lecun1989/

http://karpathy.github.io/2022/03/14/lecun1989/

Even more food for thought

https://twitter.com/_jasonwei/status/1757486124082303073

https://twitter.com/_jasonwei/status/1757486124082303073

