Neural network training: The basics and beyond

Outline

* Optimization

* Mini-batch SGD

* Learning rate decay

« Diagnosing learning curves

« Adaptive optimization methods: SGD with momentum, RMSProp, Adam
Massaging the numbers

« Data augmentation

« Data preprocessing

« Weight initialization

« Batch normalization

Regularization

Test time: averaging predictions, ensembles

Transfer learning, distillation

Mini-batch SGD

Caspar David Friedrich, Wanderer
above a sea of fog, 1817

https://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
https://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

Mini-batch SGD

* |terate over epochs

« Group data into mini-batches of size b
« Compute gradient of the loss for the mini-batch (x;,v,), ..., (x3, v3):

b
~ 1
VL = Ez Vl(W, Xi,yi)
i=1

 Update parameters:
W« w —nVL

» Check for convergence, decide whether to decay learning rate

« What are the hyperparameters?
* Mini-batch size, learning rate decay schedule, deciding when to stop

Setting the mini-batch size

Smaller mini-batches: less memory overhead, less
parallelizable, more gradient noise (which could work as
regularization — see, e.g., Keskar et al., 2017)

Larger mini-batches: more expensive and less frequent
updates, lower gradient variance, more parallelizable.

Can be made to work well with good choices of learning rate
and other aspects of optimization (Goyal et al., 2018)

https://arxiv.org/pdf/1609.04836
https://arxiv.org/pdf/1706.02677.pdf

Setting the learning rate

Setting the learning rate

Too high

fiw)

fiw)

Too low

Want: good decay schedule

fiw)

Figure source

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Setting the learning rate

Too high Too low

fiw) fiw) loss

Want: good decay schedule

ﬂ“’) \

epoch

w* w

Figure source Source: Stanford CS231n

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818
http://cs231n.github.io/neural-networks-3/

Learning rate decay

* Decay formulas

- Exponential: n, = noe*t, where n, and k are hyperparameters, ¢ is
the iteration or epoch number

* Inverse: n; =1ny/(1 + kt)
 Inverse sqrt: n, = 1o/t
 Linear:n; =no(1 —1t/T), where T is the total number of epochs

« Cosine: n; = %no(l + cos(trt/T))

Learning rate decay

« Decay formulas

« Most common in practice:

« Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

 Manual: watch validation error and reduce learning rate whenever it
stops improving
« “Patience” hyperparameter: number of epochs without improvement
before reducing learning rate

A typical phenomenon

Possible explanation

loss

A

4 Loss _
Learning rate decay!

lI
|\‘ ||
| good learning rate

' large learning rate

>
. A »

Epoch

Image source

Image source: Stanford CS231n

http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Learning rate decay

« Decay formulas

« Most common in practice:

« Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

 Manual: watch validation error and reduce learning rate whenever it
stops improving
« “Patience” hyperparameter: number of epochs without improvement
before reducing learning rate
« Warmup: train with a low learning rate for a first few epochs,
or linearly increase learning rate before transitioning to

normal decay schedule (Goyal et al., 2018)

https://arxiv.org/pdf/1706.02677.pdf

Diagnosing learning curves: Obvious problems

23125

23100

23075

23050

23025

23000

22975

,v

- frain

". |

|

val

27

26

o i ‘I I'\,“H"' |

24

23

225
200
175
150
125
100
0.75
050
0.25

0

500 1000 1500 2000

Not training

2500

Bug in update calculation?

— ftrain

0

200 400 600 800

1000

Get NaNs in the loss after a number of iterations:

Numerical instability

- frain

val

0

200 400 600 800 1000 1200 1400 1600

Error increasing

Bug in update calculation?

179K

Shuffling off

Shuffling on

188K

Weird cyclical patterns in loss:

Data not shuffled

Source: Stanford CS231n

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

Diagnosing learning curves: Subtler behaviors

23

22

21

20

19

18

17

- frain
. val
"
",
Vo
“""‘\
.‘w'u‘\
Y
..’_.“w
-l“
A
)
\.\.
v \\Ov
T T T T T T
0 500 1000 1500 2000 2500

Keep training, possibly increase learning rate

20

15

10

05

0.0

Not converged yet

— ftrain
val

0

100 200 300 400 500 600

Possible overfitting

20

15

10

05

0.0

- s - frain
‘. val
‘
|
1
|

\‘a
"oy
A S N
0 500 1000 1500 2000 2500

Slow start
Bad initialization?

0 200 400 600 800 1000 1200 1400

Definite overfitting

Source: Stanford CS231n

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

When to stop training?

* Monitor validation error to decide when to stop

« “Patience” hyperparameter: number of epochs without improvement
before stopping

« Early stopping can be viewed as a kind of regularization

0.20

I I | !
e—e Training set loss

0.15H —— Validation set loss ||

0.10 }4 -

et e VAR A A AT

Loss (negative log-likelihood)

.

0 50 100 150 200 250
Time (epochs)

Figure from Deep Learning Book

https://www.deeplearningbook.org/contents/regularization.html

Outline

* Optimization
* Mini-batch SGD
 Learning rate decay
« Diagnosing learning curves
« Adaptive optimization methods: SGD with momentum, RMSProp, Adam

Where does SGD

run into trouble?

Where does SGD run into trouble?

Local minima Saddle points

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

SGD with momentum

« Goal: move faster in directions with consistent gradient, avoid
oscillating in directions with large but inconsistent gradients

Standard SGD

&

2
Y

=

SGD with momentum N Vlmage source

@

2
Y

http://ruder.io/optimizing-gradient-descent/index.html

SGD with momentum

* [ntroduce a “momentum” variable m and associated “friction”
coefficient f3:
m < fm —nVL
wew+m
« Typically start with § = 0.5, gradually increase over time

pm
actual step
momentum
step
w > —nVL

gradient step
Image source

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture04.pdf

Adagrad: Adaptive per-parameter learning rates

Keep track of history of gradient magnitudes, scale the learning
rate for each parameter based on this history

For each dimension k of the weight vector:

0L 2 Update running sum of squared
&)) () magnitudes of gradient w.r.t. kth
ow (k) weight
() (x) n 0L chle Iearping rate for kth
w «— W — weight by inverse of the

\/U (k) + € ow (k) magnitude, update kth weight

« Parameters with small gradients get large updates and vice versa
* Problem: long-ago gradient magnitudes are not “forgotten” so learning
rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp

« Introduce decay factor f (typically = 0.9) to downweight past
history exponentially:

2

dL
(k) (k) _
v\ o« o\ 4+ (1 = f) <0W(k))

n dL

(k) (k) _
wY «— w —
\/v(k) e ow (k)

http://www.cs.toronto.edu/~tijimen/csc321/slides/lecture slides lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam: Combine RMSProp with momentum

Update momentum:
me fim+ (1 —(,)VL

For each dimension k of the weight vector:

dL
v gp0) + (1= By) ((W)

W o T
Jv® + ¢

Full algorithm includes bias correction to account for m and v

starting at 0: m = — 0 = 1_vﬁt (t is the timestep)
1 2

Default parameters from paper are reputed to work well for many
models: f; =09, 5, =0999,n =1e—3,e = 1le — 8

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

2

https://arxiv.org/abs/1412.6980

Which optimizer to use in practice?

« Adaptive methods tend to reduce initial training error faster
than SGD and are “safer”

Andrej Karpathy: “In the early stages of setting baselines I like to use
Adam with a learning rate of 3e-4. In my experience Adam is much
more forgiving to hyperparameters, including a bad learning rate. For
ConvNets a well-tuned SGD will almost always slightly outperform

Adam, but the optimal learning rate region is much more narrow and
problem-specific.”

« Use Adam early in training, switch to SGD for later epochs?

http://karpathy.github.io/2019/04/25/recipe/

Which optimizer to use in practice?

« Adaptive methods tend to reduce initial training error faster
than SGD and are “safer”

« Some literature has reported problems with adaptive

methods, such as failing to converge or generalizing poorly
(Wilson et al. 2017, Reddi et al. 2018)

* More recent comparative study (Schmidt et al., 2021):
“We observe that evaluating multiple optimizers with default
parameters works approximately as well as tuning the
hyperparameters of a single, fixed optimizer.”

https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
https://openreview.net/forum?id=ryQu7f-RZ
https://arxiv.org/pdf/2007.01547.pdf

Outline

* Optimization
* Mini-batch SGD
 Learning rate decay
« Diagnosing learning curves
« Adaptive methods: SGD with momentum, RMSProp, Adam

« Massaging the numbers
« Data augmentation
« Data preprocessing
« Weight initialization
« Batch normalization

Data augmentation

* Introduce transformations not adequately sampled in the

training data

« Geometric: flipping, rotation, shearing, multiple crops

Image source

L 5y vZld
y o
o

@‘.

SEN

Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation

* Introduce transformations not adequately sampled in the
training data
« Geometric: flipping, rotation, shearing, multiple crops
* Photometric: color transformations

Image source

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation

Introduce transformations not adequately sampled in the
training data

Geometric: flipping, rotation, shearing, multiple crops
Photometric: color transformations

Other: add noise, compression artifacts, lens distortions, etc.
Automatic augmentation strategies: AutoAugment, RandAugment

https://arxiv.org/pdf/1805.09501.pdf
https://arxiv.org/pdf/1909.13719.pdf

Data preprocessing

« Zero centering

« Subtract mean image — all input images need to have the same
resolution

« Subtract per-channel means — images don’t need to have the same
resolution

« Optional: rescaling — divide each value by (per-pixel or per-
channel) standard deviation

* Be sure to apply the same transformation at training and test
time!
« Save training set statistics and apply to test data

The importance of preprocessing and initialization

 Consider the behavior of a linear+ReLU unit: h = ReLU(w’'x + b)

@

w: normal to a hyperplane
Bias b: (unnormalized)
distance from hyperplane
to origin

Review: Backward pass for ReLU

ah—]l >0
—— =[x > 0]

X .
de B de
dx 0h
de de
— = —I[x > 0]

dx 0h

The importance of preprocessing and initialization

Linear+ReLU unit: h = ReLU(w’'x + b)

2) w: normal to a hyperplane
X . .
é Bias b: (unnormalized)
@ 7@ distance from hyperplane
o © ‘.. o ©® to origin
O ‘. O .. ®
\ ® o O
@ @ ())
() S ®ee
X
@ o© . :
« What happens in this case?
* Nonlinearity plays no role
« Upstream gradients can
\ still back-propagate

The importance of preprocessing and initialization

Linear+ReLU unit: h = ReLU(w’'x + b)

w: normal to a hyperplane
Bias b: (unnormalized)

distance from hyperplane
to origin

« What happens in this case?
« Allinputs to ReLU are
negative
* No gradients propagate
back — dead RelLU!

The importance of preprocessing and initialization

« Suppose all data is positive
 Linear perceptron with b = 0, initially all points are misclassified

« Recall the perceptron update: w <« w + ny;x;
« Updates are all positive or all negative along individual dimensions!

allowed
gradient
update
| directions
allowed
gradient
update
directions
hypothetical

optimalw Source:J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture09.pdf

The importance of preprocessing and initialization

« What's wrong with initializing all weights to the same number
(e.g., zero)?

Weight initialization

« Typically: initialize to random values sampled from zero-
mean Gaussian: w ~ NV (0, 5?)
« Standard deviation matters!

« Key idea: avoid reducing or amplifying the variance of layer
responses, which would lead to vanishing or exploding gradients

e Common heuristics:

 Xavier initialization: 6% = 1/n;, or % = 2/(niy + Nout),
where n;, and n,,; are the numbers of inputs and outputs to a layer
(Glorot and Bengio, 2010)

« Kaiming initialization (goes with ReLU): 6% = 2/n;, (He et al., 2015)
 Initializing biases: just set them to O

More details: http://cs231n.qgithub.io/neural-networks-2/#init

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/

Batch normalization

« The authors’ intuition

; - x > g 4 : 2 By - i 4 : ot
;S e O .., RO ==~ TR = NS
i ¥ 1Y, RN AR RPN R

>

: L B, 'y AWK LN g
Image source, via Prajit Ramachandran

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, ICML 2015

https://img.rt.com/files/2016.10/original/57f28764c36188fc0b8b45e8.jpg
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

« Key idea: shifting and rescaling are differentiable operations,
so the network can learn how to best normalize the data

« Statistics of activations (outputs) from a given layer across
the dataset can be approximated by statistics from a mini-

batch

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

Input: Values of = over a mini-batch: B = {x1...m };
Parameters to be learned: ~, 8
Output: {y; = BN, g(z;)}

1 m
— = i // mini-batch
ps 4 — ;x mini-batch mean
0% 1 i(wZ — uB)? // mini-batch variance
m =1
T; < Li BB // normalize
\ 0% + €
Yi < YZ; + B = BN, g(z;) // scale and shift
Why?

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

Input: Values of z over a mini-batch: B = {z1._ ., };
Parameters to be learned: v, 8

Output: {y; = BN, g(z;)}

At test time (usually):

/| vaimi-betelr mean
training set

/| #admi-beteh variance
training set
T; Li BB // normalize
\V O 123 + €
Yi < YZ; + B = BN, g(z;) // scale and shift

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

« Common configuration: insert BN layers right after conv or FC
layers, before ReLU nonlinearity (but this is purely empirical)

conv

RelLU

conv

RelLU

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

« Benefits
« Prevents exploding and vanishing gradients
« Keeps most activations away from saturation regions of non-linearities
« Accelerates convergence of training
« Makes training more robust w.r.t. hyperparameter choice, initialization

- Pitfalls

« Behavior depends on composition of mini-batches, can lead to hard-to-
catch bugs if there is a mismatch between training and test regime
(example)

* Doesn’t work well for small mini-batch sizes

« Cannot be used for certain types of models (recurrent models,
transformers)

https://www.alexirpan.com/2017/04/26/perils-batch-norm.html

Other types of normalization

« Layer normalization (Ba et al., 2016)

* Instance normalization (Ulyanov et al., 2017)
* Group normalization (Wu and He, 2018)

« Weight normalization (Salimans et al., 2016)

Batch Norm Layer Norm Instance Norm Group Norm

H,W

AV AN
LR

(VAW
Z A\ N\ N\ \

VY

NS

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Outline

* Optimization
* Mini-batch SGD
* Learning rate decay
« Diagnosing learning curves
« Adaptive methods: SGD with momentum, RMSProp, Adam
 Massaging the numbers
« Data augmentation
« Data preprocessing
« Weight initialization
« Batch normalization
« Regularization

Regularization

« Techniques for controlling the capacity of a neural network to
prevent overfitting — short of explicit reduction of the number

of parameters

L1 regularization

»
Vi M-
')

’[10

|'v oo 0.5
s [=0.5
-1.0 5 -
-1

Recall: classic regularization: L1, L2

L2 reqularization

Image source

http://laid.delanover.com/difference-between-l1-and-l2-regularization-implementation-and-visualization-in-tensorflow/

Weight decay

Generic optimization step:

L(w) = Lgata(w) + Lreg(W)

gi = VL(wy)
s; = optimizer(g;)
Wi+1 = W — 115t

Optimization with weight decay:

L(w) = Lgata(w)

gt = VL(w,)

s; = optimizer(g;)

Wepr = (L —n)we —ns;

SGD with L2 regularization:

A
L(W) — Ldata(W) + E”WHZ
9t = Vigara(wy) + Aw

Wir1 = W — NGt
= (1 —nA)wy — nVLgaea(wy)

|. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization, ICLR 2019 Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf
https://arxiv.org/pdf/1711.05101.pdf

Other types of regularization

« Adding noise to the inputs

* Recall motivation of max margin criterion

* In simple scenario (linear model, quadratic loss, Gaussian noise),
this is equivalent to weight decay

« Data augmentation is a more general form of this
« Adding noise to the weights

« Label smoothing

» Recall: when using softmax loss, replace hard 1 and 0 prediction
targets with “soft” targets of 1 — e and ——

Dropout

« At training time, in each forward pass, turn off some neurons
with probability p

« At test time, to have deterministic behavior, multiply output of
neuron by p

a) Standard Neural Net (b) After applying dropout.

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinowv.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

* Intuitions
* Prevent “co-adaptation” of units, increase robustness to noise

« Train implicit ensemble

{)

7

{)

) Ny
)

A\

.

'l/
'vf"
X
i
»
W
(X8
LN

O
0
0

o
X
N
/)
\J ‘. 0\ A \9
J
%)
7
/,‘.

o
/A

e

8-/
@

A
X
N

N
XD
X
5
0":
4

2\
T,

\)
X
D) Y
V.

(a) Standard Neural Net (b) After applying dropout.

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinowv.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Current status of dropout

* Against
« Slows down convergence
« Made redundant by batch normalization or possibly even clashes
with it
* Unnecessary for larger datasets or with sufficient data augmentation
* |Infavor

« Can still help for certain models and in certain situations: e.g., used
in Wide Residual Networks

https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1801.05134

Outline

* Optimization
* Mini-batch SGD
* Learning rate decay
« Diagnosing learning curves
« Adaptive methods: SGD with momentum, RMSProp, Adam

 Massaging the numbers
« Data augmentation
« Data preprocessing
« Weight initialization
« Batch normalization
« Regularization

« Test time: averaging predictions, ensembles

Test time

« Average predictions across multiple crops of test image

« There is a more elegant way to do this with fully convolutional
networks (FCNSs)

Test time

« Ensembles: train multiple independent models, then average
their predicted label distributions
« Gives 1-2% improvement in most cases

« Can take multiple snapshots of models obtained during training,
especially if you cycle the learning rate (increase to jump out of local

minima)
05 Single Model %57 Snapshot Ensemble m
04 -Standard LR Schedulg m 04+.-Cyclic LR Schedule : AV
0.3 o SV 03 A\ -/ \
0.2 : 0.2

0.1

0

-0.14

-0.2 4

-0.3

—04l
50

G. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

https://openreview.net/pdf?id=BJYwwY9ll

Outline

* Optimization
* Mini-batch SGD
* Learning rate decay
« Diagnosing learning curves
« Adaptive methods: SGD with momentum, RMSProp, Adam

Massaging the numbers
« Data augmentation

« Data preprocessing

« Weight initialization

« Batch normalization

Regularization

Test time: ensembles, averaging predictions

Transfer learning, distillation

How to use a pre-trained network for a new task?

Remove these layers { :

Use as off-the-shelf «— |

feature

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Pool

Input

VGG16

Strategy 1: Use as feature extractor

A. Razavian et al. CNN Features Off-the-Shelf: An Astounding

Baseline for Recognition. CVPR workshops, 2014

https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/html/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/html/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.html

Example: CNNs for image captioning

Vision Language A grou_p of people
Deep CNN Generating Shopplng at an
> RNN outdoor market.

There are many
vegetables at the
fruit stand.

FC vectors from
pre-trained network

O. Vinyals, A. Tosheyv, S. Bengio, and D. Erhan. Show and tell: A neural image caption

generator. CVPR 2015

https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1411.4555

How to use a pre-trained network for a new task?

Train new prediction — « Strategy 2: Transfer learning
layer(s) B FC 4096
| FC 4096 |
| Pool |
| Pool |
Fine-tune —

Distillation

1. Train a teacher network on initial labeled dataset

2. Save the softmax outputs the teacher network for each training
example

3. Train a student network with cross-entropy loss using the
softmax outputs of the teacher network as targets

Teacher Model
(large neural network)

softmax outputs

data Loss J
Student Model

0 student predictions ﬁ

S“ | [

g ‘*:‘: Image source
ol

I g g
v

G. Hinton, O. Vinyals, J. Dean. Distilling the knowledge in a neural network. arXiv 2015

https://arxiv.org/pdf/1503.02531.pdf
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Distillation

1. Train a teacher network on initial labeled dataset

2. Save the softmax outputs the teacher network for each training
example

3. Train a student network with cross-entropy loss using the
softmax outputs of the teacher network as targets

« Many uses:
« Compressing a larger model (or even an ensemble) into a smaller one

« “Copying” a black-box teacher model (e.g., network you can only
access via an API)

« Extending a network to additional tasks without “forgetting” old tasks
(Li and Hoiem, 2017)

https://arxiv.org/pdf/1606.09282.pdf

Some take-aways

Training neural networks is still a black art
Process requires close “babysitting”

For many techniques, the reasons why, when, and whether they work are
in active dispute — read everything but don’t trust anything

It all comes down to (principled) trial and error
Further reading: A. Karpathy, A recipe for training neural networks

Software can be chaotic, but we make it work How to actually learn any new programming concept The internet will make those bad words go away
\

Essential A

Googling the

Essential

Trying Stuff Changing Stuff and

Until it Works Seeing What Happens Error MGSSElgG

The Practical Developer

2
O RLY @ThePracticalDev ORLY? @ThePracticalDev ORLY?

The Practical Developer
@ThePracticalDev

http://karpathy.github.io/2019/04/25/recipe/

More fun reading

Deep Neural Nets: 33 years ago and 33 years from now

Mar 14, 2022

The Yann LeCun et al. (1989) paper Backpropagation Applied to Handwritten Zip Code Recognition is | believe
of some historical significance because it is, to my knowledge, the earliest real-world application of a neural net
trained end-to-end with backpropagation. Except for the tiny dataset (7291 16x16 grayscale images of digits)
and the tiny neural network used (only 1,000 neurons), this paper reads remarkably modern today, 33 years
later - it lays out a dataset, describes the neural net architecture, loss function, optimization, and reports the
experimental classification error rates over training and test sets. It's all very recognizable and type checks as a
modern deep learning paper, except it is from 33 years ago. So | set out to reproduce the paper 1) for fun, but
2) to use the exercise as a case study on the nature of progress in deep learning.

10 output units @ —--eeeeee 08 e —
fully connected
~ 300 links

layer H3
30 hidden units

MSE

fully connected
~ 6000 links

Log

layer H2 .

12 x 16=192 ., . LA o .

hidden units 2 \ ~ 40,000 links L - TS S
from 12 kernels raining passe
5x5x8

layer H1 T

12 x 64 = 768
hidden units
H1 _
~20,000 links
from 12 kernels

ror rate (%)

Ciansenane training passes

http://karpathy.qithub.i0/2022/03/14/lecun1989/

http://karpathy.github.io/2022/03/14/lecun1989/

Even more food for thought

(’ Jason Wei &
‘& @_jasonwei
An incredible skill that | have witnessed, especially at OpenAl, is the
ability to make “yolo runs” work.

The traditional advice in academic research is, “change one thing at a
time.” This approach forces you to understand the effect of each
component in your model, and therefore is a reliable way to make
something work. | personally do this quite religiously. However, the
downside is that it takes a long time, especially if you want to
understand the interactive effects among components.

A “yolo run” directly implements an ambitious new model without

extensively de-risking individual components. The researcher doing the
yolo run relies primarily on intuition to set hyperparameter values, decide

what parts of the model matter, and anticipate potential problems.
These choices are non-obvious to everyone else on the team.

Yolo runs are hard to get right because many things have to go correctly
for it to work, and even a single bad hyperparameter can cause your run
to fail. It is probabilistically unlikely to guess most or all of them
correctly.

Yet multiple times | have seen someone make a yolo run work on the first
or second try, resulting in a SOTA model. Such yolo runs are very
impactful, as they can leapfrog the team forward when everyone else is
stuck.

| do not know how these researchers do it; my best guess is intuition
built up from decades of running experiments, a deep understanding of
what matters to make a language model successful, and maybe a little
bit of divine benevolence. But what | do know is that the people who can
do this are surely 10-100x Al researchers. They should be given as many
GPUs as they want and be protected like unicorns.

1:25 PM - Feb 13,2024 - 475.5K Views

196 Reposts 98 Quotes 2,244 Likes 1,012 Bookmarks

https://twitter.com/ jasonwei/status/1757486124082303073

https://twitter.com/_jasonwei/status/1757486124082303073

