Object detection

Outline

- Task definition and evaluation
- Two-stage detectors:
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Single-stage and multi-resolution detectors
- Other detectors: CornerNet, DETR

Object detection evaluation

- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
- But how?

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU):

$$
\frac{\text { Area of Intersection }}{\text { Area of Union }}
$$

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU):

$$
\frac{\text { Area of Intersection }}{\text { Area of Union }}
$$

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU):

$$
\frac{\text { Area of Intersection }}{\text { Area of Union }}
$$

$\mathrm{loU}>0.5$ is "decent"

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU):

$$
\begin{aligned}
& \frac{\text { Area of Intersection }}{\text { Area of Union }} \\
& \text { IoU }>0.5 \text { is "decent" } \\
& \mathrm{IoU}>0.7 \text { is "pretty good" }
\end{aligned}
$$

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU):

$$
\frac{\text { Area of Intersection }}{\text { Area of Union }}
$$

loU > 0.5 is "decent"
loU >0.7 is "pretty good" loU > 0.9 is "almost perfect"

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

Problem: Detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Non-maximum suppression

How would NMS do on an image like this?

- It will eliminate "good" boxes when objects are highly overlapping

Evaluating object detectors

1. Run object detector on all test images (with NMS) 2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve	All detections sorted by score				
	0.99	0.95	0.90	0.5	0.10

Evaluating object detectors

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP)

All detections sorted by score or area under Precision vs. Recall Curve

1. For each detection (highest to lowest score)
2. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
3. Otherwise mark it as negative
4. Plot a point on PR Curve

$$
\begin{aligned}
& \text { Precision }=\frac{\text { true positive detections }}{\text { total detections so far }} \\
& \text { Recall }=\frac{\text { true positive detections }}{\text { true positive test instances }}
\end{aligned}
$$

Source: J. Johnson

Evaluating object detectors

Evaluating object detectors

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve
3. For each detection (highest to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

All detections sorted by score

All ground-truth boxes

Evaluating object detectors

All detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve
3. For each detection (highest to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

Evaluating object detectors

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve

All detections sorted by score

1. For each detection (highest to lowest score)
2. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
3. Otherwise mark it as negative
4. Plot a point on PR Curve

Evaluating object detectors

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve
3. For each detection (highest to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

Object detection: Outline

- Task definition and evaluation
- Two-stage detectors:
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Single-stage and multi-resolution detectors
- Other detectors: CornerNet, DETR

Evaluating object detectors

All detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve
3. For each detection (highest to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve
7. Average Precision $(A P)=$ area under PR curve

Evaluating object detectors

All detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) or area under Precision vs. Recall Curve

How to get $\mathrm{AP}=1.0$?

- Hit all GT boxes with loU > 0.5, and have no "false positive" detections ranked above any "true positives"

All ground-truth boxes

PASCAL VOC Challenge (2005-2012)

- 20 challenge classes:
- Person
- Animals: bird, cat, cow, dog, horse, sheep
- Vehicles: airplane, bicycle, boat, bus, car, motorbike, train
- Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
- Dataset size (by 2012): 11.5 K training/validation images, 27K bounding boxes, 7K segmentations

Progress on PASCAL detection

More recent benchmark: COCO

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:Object segmentationRecognition in contextSuperpixel stuff segmentation330K images (>200K labeled)

- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image250,000 people with keypoints

http://cocodataset.org/\#home

COCO dataset: Tasks

image classification

semantic segmentation

object detection

instance segmentation

- Also: keypoint prediction, captioning, question answering...

COCO detection metrics

```
Average Precision (AP):
    AP % AP at IoU=.50:.05:.95 (primary challenge metric)
    APIoU=.50 % AP at IoU=. 50 (PASCAL VOC metric)
    AP
AP Across Scales:
    APsmall % AP for small objects: area < 322
    AP}\mp@subsup{}{}{\mathrm{ medium }}\quad% AP for medium objects: 32 < area < 96',
    APlarge % AP for large objects: area > 96
Average Recall (AR):
    AR}\mp@subsup{}{}{\mathrm{ max = 1}
    AR max=10
    AR
AR Across Scales:
    AR
    AR medium % AR for medium objects: 32 < area < 96 }\mp@subsup{}{}{2
```


- Leaderboard: http://cocodataset.org/\#detection-leaderboard
- Not updated since 2020

Object detection: Outline

- Task definition and evaluation
- Two-stage detectors

Original Image

Region Proposals

Final Detections

R-CNN: Region proposals + CNN features

Source: R. Girshick

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014

R-CNN details

- Regions: ~2000 Selective Search proposals
- Network: AlexNet pre-trained on ImageNet (1000 classes), fine-tuned on PASCAL (21 classes)
- Final detector: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- Performance: mAP of 53.7\% on PASCAL 2010
(vs. $\mathbf{3 5 . 1} \%$ for Selective Search and $\mathbf{3 3 . 4} \%$ for Deformable Part Models)

R-CNN pros and cons

- Pros
- Much more accurate than previous approaches!
- Any deep architecture can immediately be "plugged in"
- Cons
- Not a single end-to-end system
- Fine-tune network with softmax classifier (log loss)
- Train post-hoc linear SVMs (hinge loss)
- Train post-hoc bounding-box regressions (least squares)
- Training was slow (84h), took up a lot of storage
- 2000 CNN passes per image
- Inference (detection) was slow (47s / image with VGG16)

Fast R-CNN

Rol pooling

Source: J. Johnson

Rol pooling

Source: J. Johnson

Rol pooling

Source: J. Johnson

Rol pooling

Rol pooling

Rol pooling

Rol pooling illustration

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Prediction

- For each Rol, network predicts probabilities for $C+1$ classes (class 0 is background) and four bounding box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN training

Multi-task loss

- Loss for ground truth class y, predicted class probabilities $P(y)$, ground truth box b, and predicted box \hat{b} :

$$
L(y, P, b, \hat{b})=\underbrace{-\log P(y)}_{\text {softmax loss }}+\lambda \mathbb{I}[y \geq 1] \underbrace{1]}_{\text {regression loss }}
$$

- Regression loss: smooth L_{1} loss on top of log space offsets relative to proposal

$$
L_{\mathrm{reg}}(b, \hat{b})=\sum_{i=\{x, y, w, h\}} \operatorname{smooth}_{L_{1}}\left(b_{i}-\widehat{b}_{i}\right)
$$

$$
\operatorname{smooth}_{L_{1}}(x)= \begin{cases}0.5 x^{2} & \text { if }|x|<1 \\ |x|-0.5 & \text { otherwise }\end{cases}
$$

Bounding box regression

ROI pooling: Backpropagation

- Similar to max pooling, but has to take into account overlap of pooling regions

ROI pooling: Backpropagation

- Similar to max pooling, but has to take into account overlap of pooling regions

Backward Pass:

Have $\frac{\partial e}{\partial z}$,
want $\frac{\partial e}{\partial x}$

$$
\frac{\partial e}{\partial x_{i}}=\sum_{\substack{r \\ \text { Over regions } r, \\ \text { Rol indices } j}} \sum_{\substack{j \\ \partial z_{r j}}} \frac{\partial e}{\partial x_{i}}=\sum_{r} \sum_{j} \mathbb{I}\left[i=i^{*}(r, j)\right] \frac{\partial e}{\partial z_{r j}}
$$

Fast R-CNN results

	Fast R-CNN	R-CNN	
Train time (h)	$\mathbf{9 . 5}$	84	
- Speedup	$\mathbf{8 . 8 x}$		
Test time / image	$\mathbf{0 . 3 2 s}$	47.0 s	
- Test speedup	$\mathbf{1 4 6 x}$		
mAP	$\mathbf{6 6 . 9 \%}$	66.0%	(vs. 53.7% for AlexNet)

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16.

Announcements and reminders

- Quiz 2 will be out 9AM this Friday, March 22, through 9AM next Tuesday, March 26
- MP3 is out, due Wednesday, April 3
- Project progress updates will be due Friday, April 12

Object detection: Outline

- Task definition and evaluation
- Two-stage detectors:
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Single-stage and multi-resolution detectors
- Other detectors: CornerNet, DETR

Faster R-CNN

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks, NIPS 2015

Region proposal network (RPN)

- Idea: tile the image with "anchor boxes" of a set size and try to predict how likely each anchor is to contain an object

Anchor is an object?

Region proposal network (RPN)

- Idea: tile the image with "anchor boxes" of a set size and try to predict how likely each anchor is to contain an object

Anchor is an object?

Region proposal network (RPN)

- Idea: tile the image with "anchor boxes" of a set size and try to predict how likely each anchor is to contain an object

Anchor is an object?

Region proposal network (RPN)

- Idea: tile the image with "anchor boxes" of a set size and try to predict how likely each anchor is to contain an object

Anchor is an object?

Region proposal network (RPN)

- Idea: tile the image with "anchor boxes" of a set size and try to predict how likely each anchor is to contain an object
- Introduce anchor boxes at multiple scales and aspect ratios to handle a wider range of object sizes and shapes

Anchor is an object? Anchor is an object? Anchor is an object? Anchor is an object?

Region proposal network (RPN)

- Implementation: put conv layers over low-resolution feature grid, for each grid location predict "object/no object" scores and bounding box regression coordinates

Faster R-CNN RPN design

- Slide a small window (3x3) over the conv5 layer
- Predict object/no object
- Regress bounding box coordinates with reference to anchors (3 scales x 3 aspect ratios)

One network, four losses

Faster R-CNN results

system	time	07 data	$07+12$ data
R-CNN	$\sim 50 \mathrm{~s}$	66.0	-
Fast R-CNN	$\sim 2 \mathrm{~s}$	66.9	70.0
Faster R-CNN	198 ms	69.9	$\mathbf{7 3 . 2}$

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Object detection progress

Outline

- Task definition and evaluation
- Two-stage detectors
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Single-stage and multi-resolution detectors

Streamlined detection architectures

- The Faster R-CNN pipeline separates proposal generation and region classification

- Is it possible to do detection in one shot?

YOLO

- Divide the image into a coarse grid and directly predict class label and a few candidate boxes for each grid cell

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time

Object Detection, CVPR 2016

YOLO

1. Take conv feature maps at 7×7 resolution
2. Add two FC layers to predict, at each location, a score for each class and 2 bboxes w/ confidences

- For PASCAL, output is $7 \times 7 \times 30(30=20+2 *(4+1))$

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time

Object Detection, CVPR 2016

YOLO

- Objective function:

$$
\left.\begin{array}{rl}
\lambda_{\text {coord }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left[\left(x_{i}-\hat{x}_{i}\right)^{2}+\left(y_{i}-\hat{y}_{i}\right)^{2}\right] \\
+\lambda_{\text {coord }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left[\left(\sqrt{w_{i}}-\sqrt{\hat{w}_{i}}\right)^{2}+\left(\sqrt{h_{i}}-\sqrt{\hat{h}_{i}}\right)^{2}\right]
\end{array}\right] \text { Regression } \quad\left[\begin{array}{c}
\text { Object/no object } \\
\quad+\sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
+\lambda_{\text {noobj }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {noobj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
\\
\\
+\sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text {obj }} \sum_{c \in \text { classes }}\left(p_{i}(c)-\hat{p}_{i}(c)\right)^{2}
\end{array} \quad\right. \text { Class prediction }
$$

YOLO

- Objective function:

$$
\begin{aligned}
& \text { Cell i contains object, } \\
& \text { predictor } j \text { is } \\
& \lambda_{\text {coord }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left[\left(x_{i}-\hat{x}_{i}\right)^{2}+\left(y_{i}-\hat{y}_{i}\right)^{2}\right] \\
& +\lambda_{\text {coord }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left[\left(\sqrt{w_{i}}-\sqrt{\hat{w}_{i}}\right)^{2}+\left(\sqrt{h_{i}}-\sqrt{\hat{h}_{i}}\right)^{2}\right] \begin{array}{c}
\text { Small deviations matter } \\
\begin{array}{c}
\text { less for larger boxes } \\
\text { than for smaller boxes }
\end{array}
\end{array} \\
& +\sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {obj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \quad \text { Confidence for object } \\
& +\lambda_{\text {noobj }} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{i j}^{\text {noobj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \quad \text { Confidence for no object } \\
& \text { Down-weight loss from } \\
& \text { boxes that don't contain } \\
& \text { objects (} \lambda_{\text {noobj }}=0.5 \text {) } \\
& +\sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text {obj }} \sum_{c \in \text { classes }}\left(p_{i}(c)-\hat{p}_{i}(c)\right)^{2} \quad \text { Class probability }
\end{aligned}
$$

YOLO: Results

- Each grid cell predicts only two boxes and can only have one class this limits the number of nearby objects that can be predicted
- Localization accuracy suffers compared to Fast(er) R-CNN due to coarser features, errors on small boxes
- 7x speedup over Faster R-CNN (45-155 FPS vs. 7-18 FPS)

YOLO v2

- Remove FC layer, do convolutional prediction with anchor boxes instead
- Increase resolution of input images and conv feature maps
- Improve accuracy using batch normalization and other tricks

VOC 2007 results

YouTube demo
J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017

Multi-resolution prediction: SSD

- Predict boxes of different size from different conv maps
- Each level of resolution has its own predictor

(a) Image with GT boxes

(b) 8×8 feature map

(c) 4×4 feature map

Multi-resolution prediction: SSD

- Predict boxes of different size from different conv maps
- Each level of resolution has its own predictor

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot MultiBox Detector, ECCV 2016

Feature pyramid networks

- Improve predictive power of lower-level feature maps by adding contextual information from higher-level feature maps
- Predict different sizes of bounding boxes from different levels of the pyramid (but share parameters of predictors)

RetinaNet

- Classification subnet: predict the probability of object at each position for each of A anchors and K object classes
- Box subnet: for each position and each anchor, predict offset to ground truth box (if any)

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, ICCV 2017

RetinaNet

- Focal loss: down-weight the standard cross-entropy loss for wellclassified examples

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, ICCV 2017

RetinaNet: Results

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, ICCV 2017

Fully convolutional one-stage detector (FCOS)

- "Anchor-free" approach

Figure source:
J. Johnson

Run backbone CNN to get features aligned to input image

[^0]
Fully convolutional one-stage detector (FCOS)

- "Anchor-free" approach

For each class, predict whether location falls inside a GT bounding box

Fully convolutional one-stage detector (FCOS)

- "Anchor-free" approach

For positive points, also regress distance to left, right, top, and bottom of GT box (with L2 loss)

Fully convolutional one-stage detector (FCOS)

- "Anchor-free" approach

Figure source:
J. Johnson

For positive points, also regress distance to left, right, top, and bottom of GT box (with L2 loss)

Weight detections by "centerness" and confidence, perform NMS

[^1]
Fully convolutional one-stage detector (FCOS)

Tian et al., FCOS: Fully Convolutional One-Stage Object Detection, ICCV 2019

Outline

- Task definition and evaluation
- Two-stage detectors
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Single-stage and multi-resolution detectors
- Other detectors: CornerNet, DETR

CornerNet

Fig. 1. We detect an object as a pair of bounding box corners grouped together. A convolutional network outputs a heatmap for all top-left corners, a heatmap for all bottom-right corners, and an embedding vector for each detected corner. The network is trained to predict similar embeddings for corners that belong to the same object.
H. Law and J. Deng, CornerNet: Detecting Objects as Paired Keypoints, ECCV 2018

CornerNet

Fig. 2. Often there is no local evidence to determine the location of a bounding box
 corner. We address this issue by proposing a new type of pooling layer.
H. Law and J. Deng, CornerNet: Detecting Objects as Paired Keypoints, ECCV 2018

CenterNet

- Use an additional center point to verify predictions:

K. Duan et al. CenterNet: Keypoint Triplets for Object Detection, ICCV 2019

CenterNet

Figure 2: Architecture of CenterNet. A convolutional backbone network applies cascade corner pooling and center pooling to output two corner heatmaps and a center keypoint heatmap, respectively. Similar to CornerNet, a pair of detected corners and the similar embeddings are used to detect a potential bounding box. Then the detected center keypoints are used to determine the final bounding boxes.

CenterNet

Method	FD	FD_{5}	FD_{25}	FD_{50}	FD_{S}	FD_{M}	FD_{L}
CornerNet511-52	40.4	35.2	39.4	46.7	62.5	36.9	28.0
CenterNet511-52	$\mathbf{3 5 . 1}$	$\mathbf{3 0 . 7}$	$\mathbf{3 4 . 2}$	$\mathbf{4 0 . 8}$	$\mathbf{5 3 . 0}$	$\mathbf{3 1 . 3}$	$\mathbf{2 4 . 4}$
CornerNet511-104	37.8	32.7	36.8	43.8	60.3	33.2	25.1
CenterNet511-104	$\mathbf{3 2 . 4}$	$\mathbf{2 8 . 2}$	$\mathbf{3 1 . 6}$	$\mathbf{3 7 . 5}$	$\mathbf{5 0 . 7}$	$\mathbf{2 7 . 1}$	$\mathbf{2 3 . 0}$

Table 3: Comparison of the false discovery rates (\%) of CornerNet and CenterNet on the MS-COCO validation dataset. The results suggest that CenterNet avoids a large number of incorrect bounding boxes, especially for small incorrect bounding boxes.
K. Duan et al. CenterNet: Keypoint Triplets for Object Detection, ICCV 2019

Detection Transformer (DETR)

N. Carion et al., End-to-end object detection with transformers, ECCV 2020

[^0]: Tian et al., FCOS: Fully Convolutional One-Stage Object Detection, ICCV 2019

[^1]: Tian et al., FCOS: Fully Convolutional One-Stage Object Detection, ICCV 2019

