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Generative modeling tasks
• Generation: learn to sample from the distribution represented 

by the training set



Generative modeling tasks
• Generation conditioned on class label or text prompt

Figure source

https://arxiv.org/pdf/1805.08318.pdf


Generative modeling tasks
• Generation conditioned on image (image-to-image 

translation)

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial 
Networks, CVPR 2017

https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/


Designing a network for generative tasks
1. We need an architecture that can generate an image

Random 
seed or 

latent code

Unconditional 
generation



Designing a network for generative tasks
1. We need an architecture that can generate an image

Image-to-image translation



Designing a network for generative tasks
1. We need an architecture that can generate an image
2. We need to design the right loss function and training 

framework



Learning to sample

Training data 𝑥	~	𝑝!"#" Generated samples 𝑥	~	𝑝$%!&' 

We want to learn 𝑝!"#$% that matches 𝑝#&'& 

Adapted from Stanford CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf


Generative adversarial networks
• Train two networks with opposing objectives:

• Generator: learns to generate samples
• Discriminator: learns to distinguish between generated and real 

samples

I. Goodfellow et al. Generative adversarial nets. NeurIPS 2014

𝐺
Random noise 𝑧

𝐷
“Fake”

𝐷
“Real”

Figure adapted 
from F. Fleuret

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf


GAN objective
• The discriminator 𝐷(𝑥) should output the probability that the 

sample 𝑥 is real 
• That is, we want 𝐷(𝑥) to be close to 1 for real data and close to 0 for 

fake
• According to the discriminator, the expected conditional log 

likelihood for real and generated data is given by
             𝔼(~*!"#" log 𝐷(𝑥)

          = 𝔼(~*!"#" log 𝐷(𝑥) 	+ 	𝔼+~*log(1 − 𝐷 𝐺(𝑧) )
We seed the generator with noise 𝑧 
drawn from a simple distribution 𝑝 

(Gaussian or uniform)

+	 𝔼(~*$%& log 1 − 𝐷 𝑥



GAN objective
𝑉 𝐺, 𝐷 = 𝔼(~*!"#" log 𝐷(𝑥) + 𝔼+~*log(1 − 𝐷 𝐺(𝑧) )

• The discriminator wants to correctly distinguish real and fake 
samples:

𝐷∗ = arg	max- 	𝑉(𝐺, 𝐷)

• The generator wants to fool the discriminator:
𝐺∗ = arg	min. 	𝑉(𝐺, 𝐷)

• We can try to train the generator and discriminator jointly in a 
minimax game



GAN objective: Theoretical properties
𝑉 𝐺, 𝐷 = 𝔼(~*!"#" log 𝐷(𝑥) + 𝔼+~*log(1 − 𝐷 𝐺(𝑧) )

• Assuming unlimited capacity for generator and discriminator 
and unlimited training data:
• The objective min* 	max+𝑉 𝐺, 𝐷  is equivalent to Jensen-Shannon 

divergence between 𝑝!"#" and 𝑝,&- and global optimum (Nash 
equilibrium) is given by 𝑝!"#" = 𝑝,&-

• If at each step, 𝐷 is allowed to reach its optimum given 𝐺, and 𝐺 is 
updated to decrease 𝑉 𝐺, 𝐷 , then 𝑝,&- with eventually converge to 
𝑝!"#"



Non-saturating GAN loss (NSGAN)
𝑉 𝐺, 𝐷 = 𝔼(~*!"#" log 𝐷(𝑥) + 𝔼+~*log(1 − 𝐷 𝐺(𝑧) )

• Alternate between
• Gradient ascent on discriminator:

𝐷∗ = arg	max+	𝑉 𝐺, 𝐷

• Gradient descent on generator (minimize log-probability of generator 
samples being labeled “fake”):

𝐺∗ = arg	min* 	𝑉 𝐺, 𝐷
= arg	min* 	𝔼/~1log(1 − 𝐷 𝐺(𝑧) )

• In practice, do gradient ascent on generator (maximize log-probability 
of generator samples being labeled “real”):

𝐺∗ = arg	max* 	𝔼/~1log(𝐷 𝐺(𝑧) )



Non-saturating GAN loss (NSGAN)
min2!𝔼/~1	log(1 − 𝐷 𝐺(𝑧) )    vs.    max2!𝔼/~1	log(𝐷 𝐺(𝑧) )

Minimize log-probability of generator 
samples labeled “fake”

Maximize log-probability of generator 
samples labeled “real”



Non-saturating GAN loss (NSGAN)
min2!𝔼/~1	log(1 − 𝐷 𝐺(𝑧) )    vs.    max2!𝔼/~1	log(𝐷 𝐺(𝑧) )

log(1 − 𝐷(𝐺(𝑧))

−log(𝐷(𝐺(𝑧))

Want to learn from 
confidently rejected 
sample but gradients 
here are small

These samples already fool 
the discriminator so we don’t 
need large gradients here

Small gradients for high-
quality samplesLarge gradients for low-

quality samples

Figure source

Low discriminator score 
(low-quality samples)

High discriminator score 
(high-quality samples)

Minimize log-probability of generator 
samples labeled “fake”

Maximize log-probability of generator 
samples labeled “real”

𝐷(𝐺 𝑧 )

https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt


GAN training in practice
• Update discriminator:

• Repeat for 𝑘 steps:
• Sample mini-batch of noise samples 𝑧<, … , 𝑧= and 

mini-batch of real samples 𝑥<, … , 𝑥= 
• Update parameters of 𝐷 by stochastic gradient ascent on

1
𝑚
<
=

log 𝐷(𝑥=) + log(1 − 𝐷 𝐺(𝑧=) )

• Update generator:
• Sample mini-batch of noise samples 𝑧<, … , 𝑧=
• Update parameters of 𝐺 by stochastic gradient ascent on

1
𝑚
<
=

log 𝐷 𝐺(𝑧=)

• Repeat until happy with results



GAN: Schematic picture
• Update discriminator: push 𝐷(𝑥#&'&) close to 1 and 𝐷 𝐺(𝑧)  

close to 0
• The generator is a “black box” to the discriminator

𝑧 𝐺 𝐷
𝐺(𝑧)

𝐷 𝐺(𝑧)

𝑥!"#"

𝐷(𝑥!"#")



GAN: Schematic picture
• Update generator: increase 𝐷 𝐺(𝑧)

• Requires back-propagating through the composed generator-
discriminator network (i.e., the discriminator cannot be a black box)

• The generator is exposed to real data only via the output of the 
discriminator and its gradients

𝑧 𝐺 𝐷 𝐷 𝐺(𝑧)
𝐺(𝑧)



GAN: Schematic picture
• Test time – the discriminator is discarded

𝑧 𝐺 𝐺(𝑧)



Original GAN results

Nearest real image for 
sample to the left

MNIST digits Toronto Face Dataset

I. Goodfellow et al. Generative adversarial nets. NeurIPS 2014

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


Original GAN results

CIFAR-10 (FC networks) CIFAR-10 (conv networks)

I. Goodfellow et al. Generative adversarial nets. NeurIPS 2014

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


• Early, influential convolutional architecture for generator

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016

Four transposed convolution layers 
with output stride of 2 for upsampling, 

followed by ReLU activations Tanh activations 
in the last layer

Uniformly 
distributed 

input

Linear 
transformation

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf


• Early, influential convolutional architecture for generator
• Discriminator architecture (empirically determined to give 

best training stability):
• Don’t use pooling, only strided convolutions
• Use Leaky ReLU activations (sparse gradients cause problems for 

training)
• Use only one FC layer before the softmax output
• Use batch normalization after most layers (in the generator also)

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf


DCGAN results

Generated bedrooms after one epoch



DCGAN results

Generated bedrooms after five epochs



DCGAN results
More bedrooms

Source: F. Fleuret

Notice 
repetition 
artifacts
(analysis)

https://distill.pub/2016/deconv-checkerboard/


DCGAN results
Interpolation between different points in the z space



DCGAN results
• Vector arithmetic in the z space



DCGAN results
• Vector arithmetic in the z space



DCGAN results
• Pose transformation by adding a “turn” vector



Problems with GAN training
• Stability

• Parameters can oscillate or diverge, generator loss does not 
correlate with sample quality

• Behavior very sensitive to hyperparameter selection



Problems with GAN training
• Mode collapse

• Generator ends up modeling only a small subset of the training data

Source

Source

https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://arxiv.org/pdf/1701.00160.pdf
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Wasserstein GAN (WGAN)
• Motivated by Wasserstein or Earth mover’s distance, which is 

an alternative to JS divergence for comparing distributions
• In practice, use linear activation instead of sigmoid in the 

discriminator and drop the logs from the objective:

min. 	max- 𝔼(~*!"#"𝐷 𝑥 − 𝔼+~*𝐷 𝐺(𝑧)

• Due to theoretical considerations, important to ensure smoothness of 
discriminator 

• This paper’s suggested method is clipping weights to fixed range 
[−𝑐, 𝑐]

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf


Wasserstein GAN (WGAN)
• Benefits (claimed)

• Better gradients, more stable training
• Objective function value is more meaningfully related to quality of 

generator output

Original GAN divergence WGAN divergence

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf


Improved Wasserstein GAN (WGAN-GP)
• Weight clipping leads to problems with discriminator training
• Improved Wasserstein discriminator loss:

𝔼 /(~*$%&𝐷 9𝑥 − 𝔼(~*'%"(𝐷 𝑥

I. Gulrajani et al. Improved training of Wasserstein GANs. NeurIPS 2017

Unit norm gradient penalty on 
points >𝑥	obtained by interpolating 

real and generated samples

+	𝜆	𝔼 0(~*)* ∇ 0(𝐷(<𝑥) 1 − 1 1

https://arxiv.org/pdf/1704.00028.pdf


Improved Wasserstein GAN: Results

I. Gulrajani et al. Improved training of Wasserstein GANs. NeurIPS 2017

https://arxiv.org/pdf/1704.00028.pdf


Least Squares GAN (LSGAN)
• Use least squares cost for generator and discriminator

• Equivalent to minimizing Pearson 𝜒A divergence

𝐿- = 𝔼(~*!"#" 𝐷 𝑥 − 1 1 + 𝔼+~*(𝐷 𝐺(𝑧) )1

𝐿* = 	𝔼/~1(𝐷 𝐺 𝑧 − 1)A

Push discrim. 
response on real 
data close to 1

Push response on 
generated data close to 0

Push response on 
generated data close to 1

X. Mao et al. Least squares generative adversarial networks. ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


Least Squares GAN (LSGAN)
• Benefits (claimed)

• Higher-quality images

X. Mao et al. Least squares generative adversarial networks. ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


Least Squares GAN (LSGAN)
• Benefits (claimed)

• Higher-quality images 
• More stable and resistant to mode collapse

X. Mao et al. Least squares generative adversarial networks. ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


GAN with hinge loss
• Discriminator: Drive discriminator score on real data above 1, 

on generated data below −1

𝐿- = −𝔼(~*!"#" min(0, 𝐷 𝑥 − 1)
	 −𝔼+~* min(0, −𝐷 𝐺 𝑧 − 1)

• Generator: maximize discriminator score on generated data
𝐿. = −𝔼+~*𝐷(𝐺 𝑧 )

T. Miyato et al. Spectral normalization for generative adversarial networks. ICLR 2018

https://arxiv.org/pdf/1802.05957.pdf
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How to evaluate GANs?
• Showing pictures of samples is not enough, especially for 

simpler datasets like MNIST, CIFAR, faces, bedrooms, etc.
• We cannot directly compute the likelihoods of high-

dimensional samples (real or generated), or compare their 
distributions

• Many GAN approaches claim mainly to improve stability, 
which is hard to evaluate



GAN evaluation: Human studies
• Example: Turing test

T. Salimans et al. Improved techniques for training GANs. NeurIPS 2016

https://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf


GAN evaluation: Inception score (IS)
• Key idea: generators should produce images with a variety of 

recognizable object classes
• Pass generated samples 𝑥	through an image classifier (InceptionNet), 

compute posterior class distributions 𝑃 𝑦 𝑥  and marginal distribution 𝑃(𝑦)
• Compute Inception score as	

𝐼𝑆 𝐺 = exp 𝔼B~* 	𝐾𝐿(𝑃 𝑦 𝑥 ∥ 𝑃 𝑦 ) . 
• IS should be high when:

• Samples 𝑥 contain recognizable objects, so entropy of 𝑃(𝑦|𝑥) is low
• The predicted labels of samples are diverse, so the entropy of 𝑃(𝑦) is high

T. Salimans et al. Improved techniques for training GANs. NeurIPS 2016

https://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf


GAN evaluation: Inception score (IS)
• Disadvantages 

• A GAN that simply memorizes the training data (overfitting) or outputs 
a single image per class (mode dropping) could still score well

• Is sensitive to network weights, not necessarily valid for generative 
models not trained on ImageNet, can be gamed (Barratt & Sharma 
2018)

https://arxiv.org/pdf/1801.01973.pdf


GAN evaluation: Fréchet Inception Distance (FID)
• Key idea: fit simple distributions (Gaussians) to statistics of 

feature activations for real and generated data; estimate 
divergence parametrically
• Pass generated samples through a network (InceptionNet), compute 

activations for a chosen layer
• Estimate multivariate mean and covariance of activations, compute 

Fréchet distance to those of real data
• Advantages: correlated with visual quality of samples and 

human judgment, can detect mode dropping (unlike IS)
• Disadvantages: cannot detect overfitting (like IS), can be 

sensitive to resampling and compression (Parmar et al. 2021)

M. Heusel et al. GANs trained by a two time-scale update rule converge to a local 
Nash equilibrium, NeurIPS 2017

https://arxiv.org/abs/2104.11222
https://arxiv.org/pdf/1706.08500.pdf
https://arxiv.org/pdf/1706.08500.pdf


Are GANs created equal?
• From the abstract: 

“We find that most models can reach similar scores with 
enough hyperparameter optimization and random restarts. 
This suggests that improvements can arise from a higher 
computational budget and tuning more than fundamental 
algorithmic changes … We did not find evidence that any 
of the tested algorithms consistently outperforms the 
non-saturating GAN introduced in Goodfellow et al. 
(2014)”

M. Lucic et al. Are GANs created equal? A large-scale study. NeurIPS 2018 

https://arxiv.org/pdf/1711.10337.pdf

