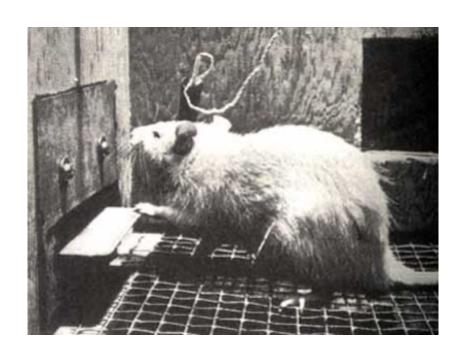
Introduction to deep reinforcement learning

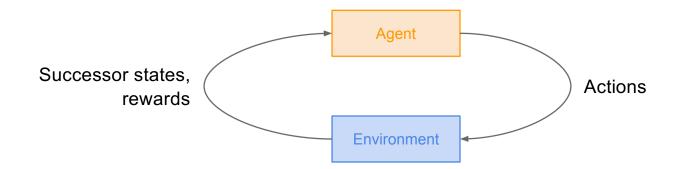


Outline

- Introduction to reinforcement learning
- Markov Decision Process (MDP) formalism
- The Bellman equation
- Q-learning
- Deep Q networks (DQN)
- Extensions
 - Double DQN
 - Dueling DQN

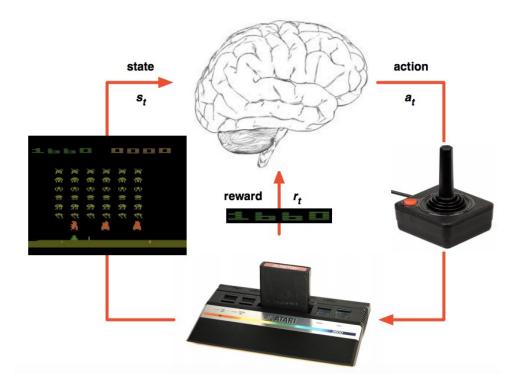
Reinforcement learning (RL)

- Setting: agent that can take actions affecting the state of the environment and observe occasional rewards that depend on the state
- Goal: learn a policy (mapping from states to actions) to maximize expected reward over time



Example applications of deep RL

Playing games



V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Human-level control through deep reinforcement learning, *Nature* 2015

Example applications of deep RL

Playing games

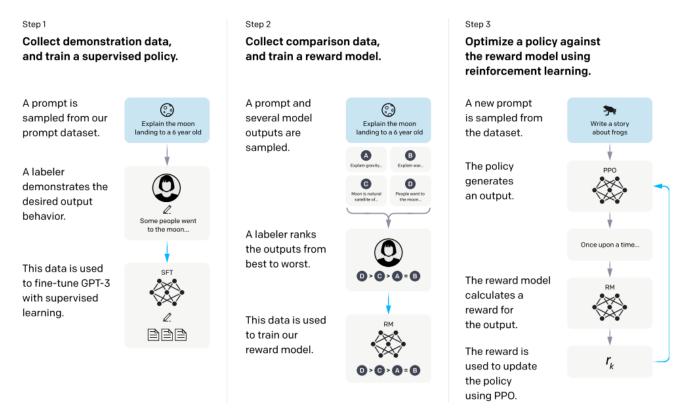
https://deepmind.com/research/alphago/

Sensorimotor learning

A. Agarwal, A. Kumar, J. Malik, and D. Pathak. <u>Legged Locomotion in Challenging Terrains</u>
<u>using Egocentric Vision</u>. CoRL 2022

Example applications of deep RL

Improving large language models

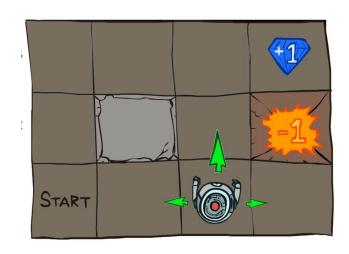


L. Ouyang et al. Training language models to follow instructions with human feedback. NeurIPS 2022

Formalism: Markov Decision Processes

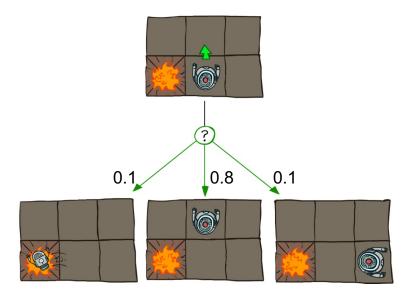
- Components:
 - States s, beginning with initial state s₀
 - Actions a
 - Transition model P(s' | s, a)
 - Markov assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function r(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP

Example MDP: Grid world



r(s) = -0.04 for every non-terminal state

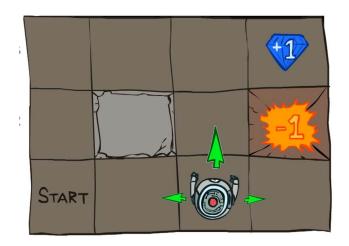
Transition model:

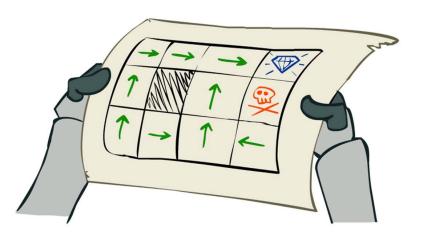


Source: P. Abbeel and D. Klein

Example MDP: Grid world

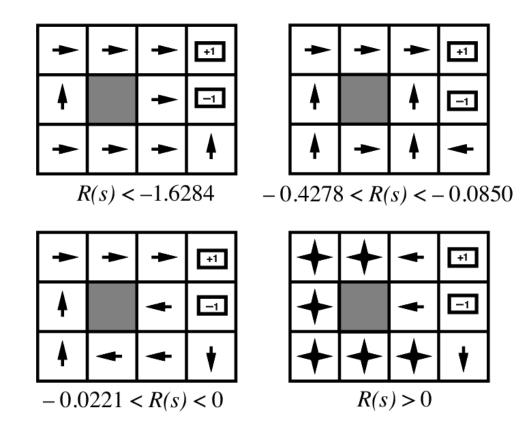
Goal: find the best policy





Example MDP: Grid world

• Optimal policies for various values of r(s):



Reinforcement learning loop

- From state s, take action a determined by policy $\pi(s)$
- Environment selects next state s' based on transition model P(s'|s,a)
- Observe s' and reward r(s'), update policy
- Compare: SGD loop
 - Get input x_i sampled i.i.d. from data distribution
 - Use model with parameters w to predict output y
 - Observe target output y_i and loss $l(w, x_i, y_i)$
 - Update w to reduce loss: $w \leftarrow w \eta \ \nabla l(w, x_i, y_i)$

RL vs. supervised learning

Reinforcement learning

- Agent's actions affect the environment and help to determine next observation
- Rewards may be sparse
- Rewards are not differentiable w.r.t. model parameters

Supervised learning

- Next input does not depend on previous inputs or agent's predictions
- There is a supervision signal at every step
- Loss is differentiable w.r.t. model parameters

Solving MDPs

- Components:
 - States s, beginning with initial state s₀
 - Actions a
 - Transition model P(s' | s, a)
 - Markov assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function r(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP
 - But how to find this solution?

Cumulative rewards of state sequences

- Suppose that following policy π starting in state s_0 leads to a sequence or trajectory $\tau = (s_0, s_1, s_2, ...)$
- How do we define the cumulative reward of this trajectory?
- Problem: the sum of rewards of individual states grows is not normalized w.r.t. sequence length and can even be infinite
- Solution: define cumulative reward as sum of rewards discounted by a factor γ , $0 < \gamma \le 1$

Discounting

• Discounted cumulative reward of trajectory $\tau = (s_0, s_1, s_2, s_3, ...)$:

$$r(s_0, s_1, s_2, s_3, \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \dots$$
$$= \sum_{t \ge 0} \gamma^t r(s_t)$$

- Sum is bounded by $\frac{r_{\text{max}}}{1-\gamma}$ (assuming $0 < \gamma \le 1$)
- Helps algorithms converge
- Notice:

Value function

• The value function $V^{\pi}(s)$ of a state s w.r.t. policy π is the expected cumulative reward of following that policy starting in s:

$$V^{\pi}(s) = \mathbb{E}_{\tau}[r(\tau)|\ s_0 = s, \pi]$$

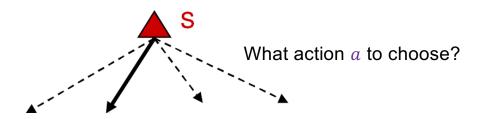
where τ is a trajectory with starting state s, actions given by π , and successor states drawn according to transition model: $s_{t+1} \sim P(\cdot | s_t, a_t)$

 The optimal value of a state is the value achievable by following the best possible policy:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

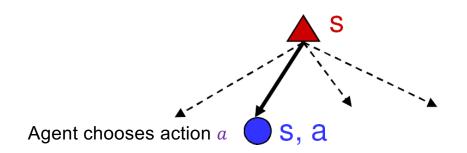
The optimal policy

 How do we express the optimal policy in terms of optimal state values?



The optimal policy

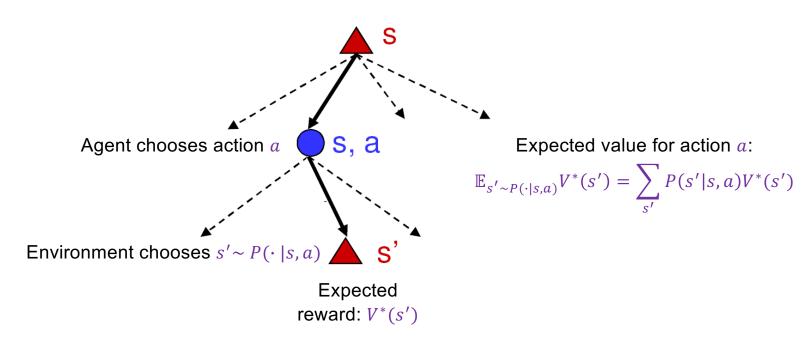
 How do we express the optimal policy in terms of optimal state values?



The optimal policy

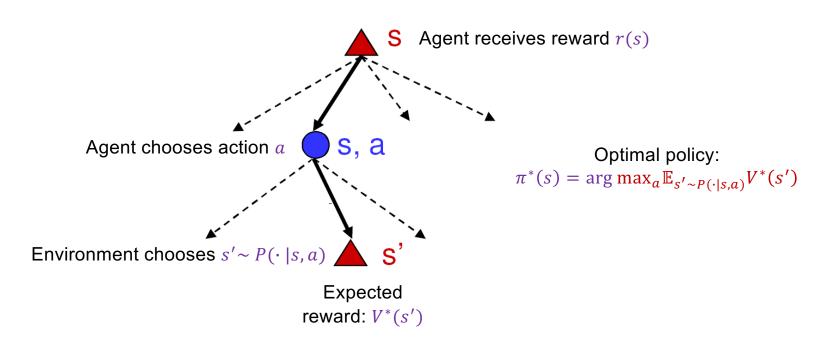
- How do we express the optimal policy in terms of optimal state values?
 - Take the action that maximizes the expected future cumulative value:

$$\pi^*(s) = \arg\max_{\alpha} \mathbb{E}_{s' \sim P(\cdot|s,\alpha)} V^*(s')$$



The Bellman equation

$$V^*(s) = r(s) + \gamma \max_{a} \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s')$$
Reward in current state Expected future cumulative value assuming agent follows the optimal policy



The Bellman equation

$$V^*(s) = r(s) + \gamma \max_a \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s')$$
Reward in current state Expected future cumulative value assuming agent follows the optimal policy

 It's a recursive relationship between optimal values of successive states!

Q-learning

 To choose actions using value functions, we need to know the transition model:

$$\pi^*(s) = \arg\max_{a} \mathbb{E}_{s' \sim P(\cdot|S, a)} V^*(s')$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

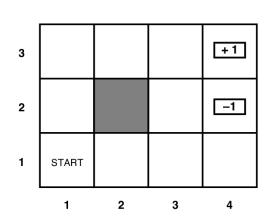
It is more convenient to define the value of a state-action pair:

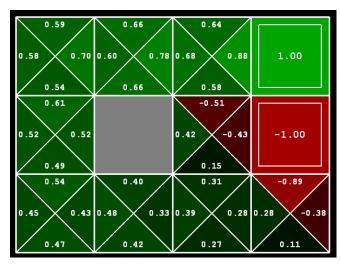
$$Q^{\pi}(s, a) = \mathbb{E}_{\tau}[r(\tau)|s_0 = s, a_0 = a, \pi]$$

Then the optimal policy is given by

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Q-value function: Example





Bellman equation for Q-values

Relationship between regular values and Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$

Regular Bellman equation:

$$V^*(s) = r(s) + \gamma \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} V^*(s')$$

Bellman equation for Q-values:

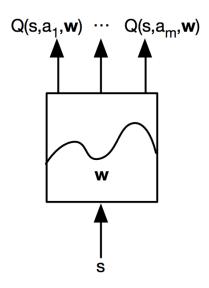
$$Q^*(s, a) = r(s) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^*(s', a')$$
$$= \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[r(s) + \gamma \max_{a'} Q^*(s', a') \right]$$

Deep Q-learning

$$Q^{*}(s, a) = \mathbb{E}_{s' \sim P(\cdot | s, a)} [r(s) + \gamma \max_{a'} Q^{*}(s', a') | s, a]$$

• Idea 1: estimate Q-values using a neural network:

$$Q^*(s,a) \approx Q_w(s,a)$$



V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Human-level control through deep reinforcement learning, *Nature* 2015

Deep Q-learning

$$Q^{*}(s, a) = \mathbb{E}_{s' \sim P(\cdot | s, a)} [r(s) + \gamma \max_{a'} Q^{*}(s', a') | s, a]$$

Idea 1: estimate Q-values using a neural network:

$$Q^*(s,a) \approx Q_w(s,a)$$

• **Idea 2**: instead of taking the expectation over successor states, use a single *transition* (s, a, s') to update estimate of $Q_w(s, a)$ to better agree with the *target*

$$r(s) + \gamma \max_{a'} Q_w(s', a')$$

• **Idea 3**: to avoid training instability, compute target values using a different snapshot of the network, Q_{target}

Deep Q-learning

Given transition (s, a, s'), compute target:

$$y_{\text{target}}(s, a, s') = r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a')$$

Loss function:

$$L(w) = \mathbb{E}_{s,a,s'} \left[(y_{\text{target}}(s, a, s') - Q_w(s, a))^2 \right]$$

Gradient update:

$$\nabla_{w}L(w) = \mathbb{E}_{s,a,s'} \left[(y_{\text{target}}(s, a, s') - Q_{w}(s, a)) \nabla_{w}Q_{w}(s, a) \right]$$

$$= \mathbb{E}_{s,a,s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') - Q_{w}(s, a)) \nabla_{w}Q_{w}(s, a) \right]$$

• Sample transitions (s, a, s') by choosing actions from a behavior distribution and using an experience replay buffer

Deep Q-learning: Summary

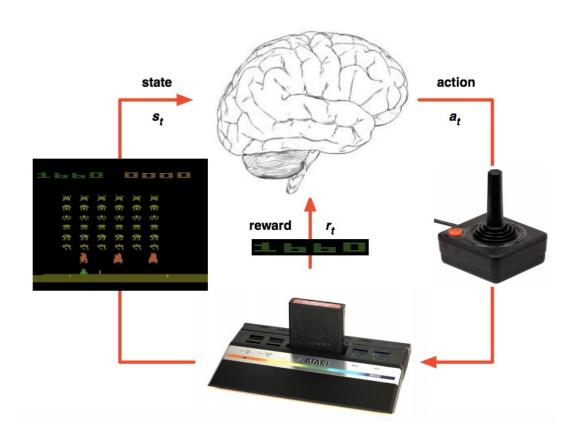
- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer

s_1, a_1, r_2, s_2
s_2, a_2, r_3, s_3
<i>s</i> ₃ , <i>a</i> ₃ , <i>r</i> ₄ , <i>s</i> ₄
$s_t, a_t, r_{t+1}, s_{t+1}$

- Randomly sample mini-batch of experiences from the buffer
- Perform gradient descent step on loss:

$$L(w) = \mathbb{E}_{s,a,s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') - Q_w(s, a))^2 \right]$$

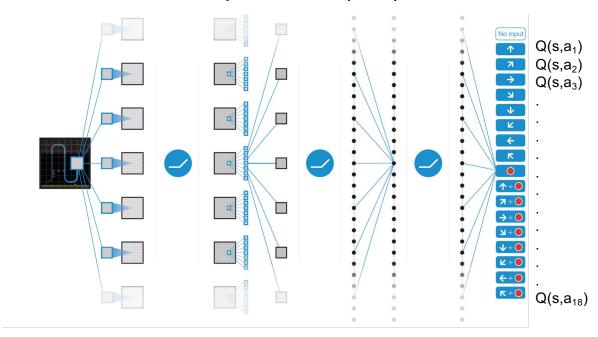
Update target network every C steps



V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Human-level control through deep reinforcement learning, *Nature* 2015

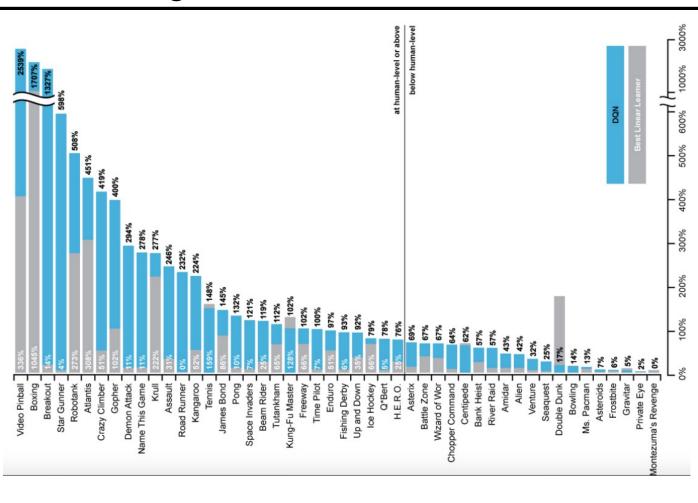
- End-to-end learning of Q(s, a) from pixels s
- Output is Q(s, a) for 18 joystick/button configurations
- Reward is change in score for that step

Deep Q-Network (DQN)



- Input state is stack of raw pixels (grayscale) from last 4 frames
- Network architecture and hyperparameters fixed for all games





Breakout demo



https://www.youtube.com/watch?v=TmPfTpjtdgg

Outline

- Introduction to reinforcement learning
- Markov Decision Process (MDP) formalism and classical Bellman equation
- Q-learning
- Deep Q networks
- Extensions
 - Double DQN
 - Dueling DQN

Extension: Double Q-learning

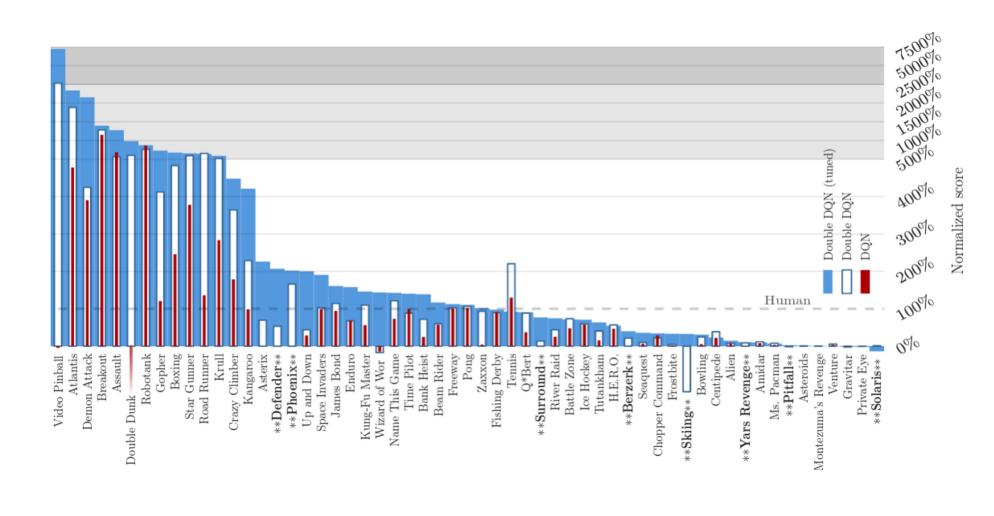
- Max operator in standard Q-learning is used both to select and evaluate an action, leading to systematic over-estimation of Q-values
- Modification: select action using the online (current) network, but evaluate Q-value using the target network
- Regular DQN target:

$$y_{\text{target}}(s, a) = r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a')$$

Double DQN target:

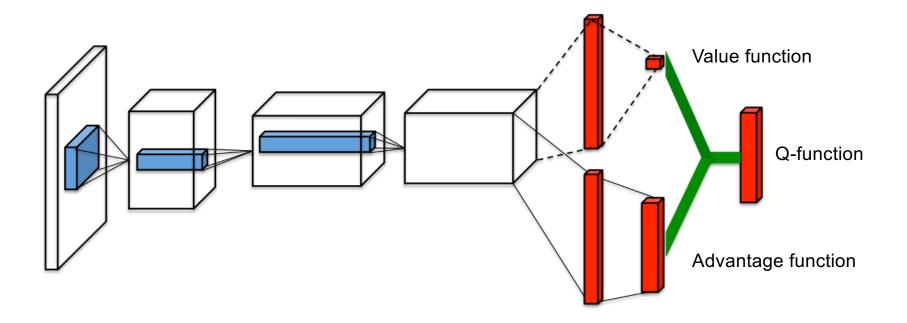
$$y_{\text{target}}(s, a) = r(s) + \gamma Q_{\text{target}}(s', \operatorname{argmax}_{a}, Q_w(s', a'))$$

Double DQN results



Another extension: Dueling DQN

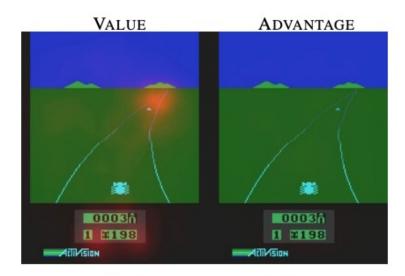
 Decompose estimation of Q-function into value and advantage functions

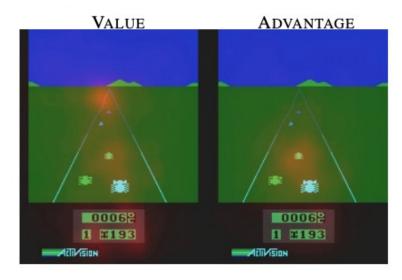


Z. Wang et al., <u>Dueling Network Architectures for Deep Reinforcement Learning</u>, ICML 2016

Dueling DQN

- Decompose estimation of Q-function into value and advantage functions
 - Motivation: in many states, actions don't meaningfully affect the environment, so it is not necessary to know the exact value of each action at each time step





Z. Wang et al., <u>Dueling Network Architectures for Deep Reinforcement Learning</u>, ICML 2016

Dueling DQN

 Decompose estimation of Q-function into value and advantage functions:

$$Q(s, a) = V(s) + (A(s, a) - \max_{a'} A(s, a'))$$
 or

$$Q(s,a) = V(s) + \left(A(s,a) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s,a')\right)$$

Z. Wang et al., <u>Dueling Network Architectures for Deep Reinforcement Learning</u>, ICML 2016

Dueling DQN: Results

Improvements over prioritized DDQN baseline:

