Transformers for image modeling
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Transformers for image modeling: Outline

Architectures

Self-supervised learning
Autoregressive text-to-image generation
Trends



Self-attention for images

« |dea: self-attention produces adaptive receptive fields that
can better capture non-local structure

H. Zhang, |. Goodfellow, D. Metaxas, A. Odena. Self-Attention Generative Adversarial Networks. ICML 2019



https://arxiv.org/pdf/1805.08318.pdf

Self-attention for images
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H. Zhang, |. Goodfellow, D. Metaxas, A. Odena. Self-Attention Generative Adversarial Networks. ICML 2019
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Image GPT — OpenAl
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M. Chen et al. Generative pretraining from pixels. ICML 2020



https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://openai.com/blog/image-gpt/

Image GPT

* Image resolution up to 64x64, color values quantized to 512
levels (9 bits), dense attention

* For transfer learning, average-pool encoded features across

all positions
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Figure 4. Comparison of auto-regressive pre-training with BERT
pre-training using iGPT-L at an input resolution of 322 x 3. Blue
bars display linear probe accuracy and orange bars display fine-
tune accuracy. Bold colors show the performance boost from
ensembling BERT masks. We see that auto-regressive models
produce much better features than BERT models after pre-training,
but BERT models catch up after fine-tuning.

M. Chen et al. Generative pretraining from pixels. ICML 2020
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Vision transformer (ViT) — Google

Split an image into patches, feed linearly projected patches into

standard transformer encoder
With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images
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A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/2010.11929.pdf

Vision transformer (ViT)

« Trained in a supervised fashion, fine-tuned on ImageNet

—_ 20 Figure 3: Transfer to ImageNet. While
X large ViT models perform worse than BiT
> ResNets (shaded area) when pre-trained on
§ 85 1 small datasets, they shine when pre-trained on
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A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/1912.11370.pdf
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://arxiv.org/pdf/2010.11929.pdf

Hierarchical transformer: Swin
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Z. Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021


https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf

Hierarchical transformer: Swin
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Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer [ (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer [ + 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer
l, providing connections among them.

Z. Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021



https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf

Swin results

(a) Regular ImageNet-1K trained models

method im'age #param. FLOPs tl_lroughput ImageNet

size (image / s) |top-1 acc.
RegNetY-4G [44] [224° 2IM  4.0G 1156.7 80.0
RegNetY-8G [44] [ 224° 39M 8.0G  591.6 81.7
RegNetY-16G [44] 224> 84M 16.0G  334.7 829
ViT-B/16 [19] |384° 86M 554G  85.9 779
ViT-L/16 [19] |384% 307M 190.7G  27.3 76.5
DeiT-S [57] 2242 22M  46G 9404 79.8
DeiT-B [57] 224> 86M 175G 2923 81.8
DeiT-B [57] 3842 86M 554G  85.9 83.1
Swin-T 224> 29M 45G 7552 81.3
Swin-S 224> 50M 8.7G 4369 83.0
Swin-B 224> 88M 154G  278.1 83.5
Swin-B 384> 88M 47.0G  84.7 84.5

(b) ImageNet-22K pre-trained models

method image . ram. FLOPs Proughput/imageNet

size (image / s) |top-1 acc.
R-101x3 [34] [384° 388M 204.6G 84.4
R-152x4 [34] | 480 937M 840.5G 85.4
VIT-B/16 [19] |[384> 86M 554G  85.9 84.0
ViT-L/16 [19] |384% 307M 190.7G  27.3 85.2
Swin-B 224> 88M 154G 278.1 85.2
Swin-B 3842 88M 47.0G  84.7 86.4
Swin-L 384> 197M 103.9G 42.1 87.3

Table 1. Comparison of different backbones on ImageNet- 1K clas-
sification. Throughput is measured using the GitHub repository
of [62] and a V100 GPU, following [57].

COCO detection and segmentation

(a) Various frameworks

Method  Backbone

box box box
AP™* AP5y* AP7S

#param. FLOPs FPS

Cascade R-50
Mask R-CNN Swin-T

463 64.3 50.5
50.5 69.3 54.9

82M
86M

739G
745G

18.0
15.3

R-50
ATSS Swin-T

435 61.9 47.0
47.2 66.5 51.3

32M
36M

205G
215G

28.3
22.3

R-50

RepPointsV2 Swin-T

46.5 64.6 50.3
50.0 68.5 54.2

42M
45M

274G
283G

13.6
12.0

R-50

445 63.4 48.2

106M 166G

21.0

Sparse
R-CNN

Swin-T

47.9

67.3

52.3

110M

172G 18.4

(b) Various backbones w. Cascade Mask R-CNN

box box box
AP APy AP75

mask mask mask
AP AP AP

paramFLOPsFPS

DeiT-S’
R50
Swin-T

48.0
46.3
50.5

67.2
64.3
69.3

51.7
50.5
54.9

414
40.1
43.7

64.2
61.7
66.6

44.3
43.4
47.1

80M 889G 10.4
82M 739G 18.0
86M 745G 15.3

X101-32
Swin-S

48.1
51.8

66.5
70.4

52.4
56.3

41.6
44.7

63.9
67.9

45.2
48.5

10IM 819G 12.8
107M 838G 12.0

X101-64
Swin-B

48.3

51.9

66.4
70.9

52.3
56.5

41.7
45.0

64.0
68.4

45.1
48.7

140M 972G 104

145M 982G 11.6




Diffusion models: Image-text cross-attention

« Text promptis encoded by a language model and injected into
the denoising U-Net using cross-attention
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https://arxiv.org/pdf/2208.01626.pdf

Diffusion models: Image-text cross-attention

« Text promptis encoded by a language model and injected into
the denoising U-Net using cross-attention
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Diffusion transformer
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https://openaccess.thecvf.com/content/ICCV2023/papers/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.pdf

Diffusion transformer
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Figure 2: ImageNet generation with Diffusion Transformers (DiTs). Bubble area indicates the flops of the diffusion
model. Left: FID-50K (lower is better) of our DiT models at 400K training iterations. Performance steadily improves in
FID as model flops increase. Right: Our best model, DiT-XL/2, is compute-efficient and outperforms all prior U-Net-based
diffusion models, like ADM and LDM.

W. Peebles and S. Xie. Scalable Diffusion Models with Transformers. ICCV 2023



https://openaccess.thecvf.com/content/ICCV2023/papers/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.pdf

Diffusion transformer

Increasing transformer size

Decreasing patch size

W. Peebles and S. Xie. Scalable Diffusion Models with Transformers. ICCV 2023
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Outline

* Architectures
« Self-supervised learning



DINQO: Self-distillation with no labels
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (z1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt:

# C

student and teacher networks
center (K)

# tps, tpt: student and teacher temperatures

# 1,

m: network and center momentum rates

gt .params = gs.params

for

def

x in loader: # load a minibatch x with n samples
x1l, x2 = augment (x), augment (x) # random views

sl, s2
tl, t2

gs(x1l), gs(x2) # student output n-by-K
gt (x1), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt .params = lxgt.params + (1l-1)*gs.params
C = mxC + (1l-m)xcat([tl, t2]) .mean(dim=0)

H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)

t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean ()

M. Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021



https://openaccess.thecvf.com/content/ICCV2021/papers/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.pdf

DINQO: Self-distillation with no labels

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

M. Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021



https://openaccess.thecvf.com/content/ICCV2021/papers/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.pdf

DINQO: Self-distillation with no labels

Method Arch. Param. im/s Linear k-NN
Supervised RNS50 23 1237 793 79.3
SCLR [11] RNS50 23 1237 69.1  60.7
MoCov2 [13] RNS50 23 1237 71.1 619
InfoMin [54] RNS50 23 1237 73.0 65.3
BarlowT [66] RNS50 23 1237 732  66.0
OBoW [21] RNS50 23 1237 73.8 619
BYOL [23] RN50 23 1237 744  64.8
DCv2 [9] RNS50 23 1237 752 67.1
SwAV [9] RN50 23 1237 753  65.7
DINO RNS50 23 1237 753 67.5
Supervised ViT-S 21 1007 79.8 79.8
BYOL" [23] ViT-S 21 1007 714  66.6
MoCov2* [13] VIiT-S 21 1007 727 64.4
SWAV* [9] ViT-S 21 1007 73.5 66.3
DINO ViT-S 21 1007 77.0 745

Table 2: Linear and k-NN classification on ImageNet. We report
top-1 accuracy for linear and k-NN evaluations on the validation
set of ImageNet for different self-supervised methods. We focus
on ResNet-50 and ViT-small architectures, but also report the best
results obtained across architectures. * are run by us. We run the
k-NN evaluation for models with official released weights. The
throughput (im/s) is calculated on a NVIDIA V100 GPU with 128
samples per forward. Parameters (M) are of the feature extractor.

M. Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021



https://openaccess.thecvf.com/content/ICCV2021/papers/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.pdf

Masked autoencoders
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
T As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders: Results
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Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.

method pre-train data ViT-B  ViT-L  ViT-H ViT-Hyyg
DINO [5] IN1K 82.8 - - -
MoCo v3 [9] IN1K 83.2 84.1 - -
BEiT [2] INIK+DALLE 832  85.2 5 .
MAE IN1K 83.6 85.9 86.9 87.8

APbox
method pre-train data ViT-B  ViT-L
supervised IN1K w/labels  47.9 49.3
MoCov3  INIK 479 49.3
BEiT IN1K+DALLE 49.8 53.3
MAE INIK 50.3 53.3

Table 4. COCO object detection and segmentation using a ViT
Mask R-CNN baseline. All entries are based on our implementa-
tion. Self-supervised entries use IN1K data without labels. Mask
AP follows a similar trend as box AP.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022
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Application: Visual prompting

Concatenate
into single
image

Task Input Task Output  Query
Example Example

Edge detection

Inpainting Segmentation Style transfer

A. Bar et al. Visual prompting via image inpainting. NeurlPS 2022



https://yossigandelsman.github.io/visual_prompt/index.html

Application: Visual prompting
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Figure 3: Random images from our Computer Vision Figures dataset. We curated a dataset of 88k unlabeled
figures from Computer Vision academic papers. During training, we randomly sample crops from these figures,
without any additional parsing.



Application: Visual prompting

Segmentation Colorization Inpainting Edge detection

Figure 4: Visual prompting prediction examples. Each visual prompt was fed to an MAE-VQGAN model
trained on the Figures dataset. For each visual prompt, the result is marked in red.



Application: Visual prompting

EFGABCD | | ABCDEFG | | ABCDEFG

Al A 1 2 EFGABCD | [ ABCDEFG | | ABCDEFG
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Figure 10: Style and content extrapolation using MAE-VQGAN. The model can extrapolate the style of a
new content (a), but fails to predict a new content (b). The model struggles to extrapolate new style and content
of longer sequences (c-e).

Task ambiguity Non-aligned ir{.put-OUtBu‘ Out of dist. decoding

Figure 11: Limitations and failure cases. Single input-output example might be ambiguous and can lead to
unintended completions. The MAE-VQGAN model performs worse given non-aligned input-output example,
and by using a VQGAN vocabulary, it is limited in synthesizing out-of-distribution pixels (like blurry images).
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DALL-E

« Learn a joint sequential transformer model that can be used to generate
image based on text prompt

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads

a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that

accordion. sweater walking a dog reads “backprop”. backprop
neon sign

A. Ramesh et al., Zero-Shot Text-to-Image Generation, arXiv 2021
https://openai.com/blog/dall-e/



https://arxiv.org/pdf/2102.12092.pdf
https://openai.com/blog/dall-e/

DALL-E: Image encoding

Train convolutional encoder and decoder to compress images to 32x32
grids of discrete tokens (each assuming 8192 values)

Figure 1. Comparison of original images (top) and reconstructions
from the discrete VAE (bottom). The encoder downsamples the
spatial resolution by a factor of 8. While details (e.g., the texture of
the cat’s fur, the writing on the storefront, and the thin lines in the
illustration) are sometimes lost or distorted, the main features of the
image are still typically recognizable. We use a large vocabulary
size of 8192 to mitigate the loss of information.




DALL-E: Transformer architecture and training

Concatenate up to 256 text tokens with 32x32=1024 image tokens,
learn a transformer model with 64 layers and 12B parameters

Dataset: 250M image-text pairs from the Internet

Transformer model details

Decoder-only architecture
64 self-attention layers,
62 attention heads,
sparse attention patterns
Mixed-precision training,
distributed optimization

(a) Row attention mask. (b) Column attention mask. (c) Column attention mask with (d) Convolutional attention mask.
transposed image states.

Figure 11. Illustration of the three types of attention masks for a hypothetical version of our transformer with a maximum text length of
6 tokens and image length of 16 tokens (i.e., corresponding to a 4 x 4 grid). Mask (a) corresponds to row attention in which each image
token attends to the previous 5 image tokens in raster order. The extent is chosen to be 5, so that the last token being attended to is the one
in the same column of the previous row. To obtain better GPU utilization, we transpose the row and column dimensions of the image
states when applying column attention, so that we can use mask (c) instead of mask (b). Mask (d) corresponds to a causal convolutional
attention pattern with wraparound behavior (similar to the row attention) and a 3 X 3 kernel. Our model uses a mask corresponding to
an 11 x 11 kernel.



DALL-E: Generating images given text

e Qutput samples reranked using CLIP

a crowd of people a woman and a man a bathroom with a man riding a a truck stopped at a man sitting on a

two sinks, a a car covered in

a group of urinals

d 2 . intersection ;
s standing on top of standing next to a g bike down a street ani 3 bench nextto a various empty
is near the trees cabinet and a where construction

a beach. bush bench. bathtub. past a young man. barriers are up. slug. toothpaste tubes.

best of 8 best of 64 best of 512

best of 1

Figure 6. Effect of increasing the number of images for the contrastive reranking procedure on MS-COCO captions.



PARTI: Pathways auto-regressive text-to-image

inference /" VIT-VQGAN Y
Transformer Decoder . 4| Image Detokenizer
Transformer Encoder (Transformer)
A
_______ Image Tokenizer
Train (Transformer) /
131 to tn <sos> i is iy €

Two dogs running in a field

J. Yu et al. Scaling Autoregressive Models for Content-Rich Text-to-lmage Generation. arXiv 2022



https://arxiv.org/pdf/2206.10789.pdf

PARTI

Model Encoder Layers Decoder Layers Model Dims MLP Dims Heads Total Params
Parti-350M 12 12 1024 4096 16 350M
Parti-750M 12 36 1024 4096 16 750M
Parti-3B 12 36 2048 8192 32 3B
Parti 16 64 4096 16384 64 20B

Parti-350M Parti-750M Parti-3B Parti-20B

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass
in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

ELEARNINS

RAN ENAYON Y

<_ et _’

Puffy white clouds are in the sky.



PARTI

A. A photo of a frog reading the newspaper named “Toaday” writ-

ten on it. There is a frog printed on the newspaper too.

B. A portrait of a statue of the Egyptian god Anubis wearing avia-
tor goggles, white t-shirt and leather jacket. The city of Los Ange-
les is in the background. Hi-res DSLR photograph.

C. A high-contrast photo of a panda riding a horse. The panda is

wearing a wizard hat and is reading a book. The horse is standing
on a street against a gray concrete wall. Colorful flowers and the
word "PEACE" are painted on the wall. Green grass grows from
cracks in the street. DSLR photograph. daytime lighting.



BE
EXCELLENT
TO EACH
OTHER:

\ J S oW S

D. A giant cobra snake made from X. X € {“salad”, “pancakes”, E.A wombat sits in a yellow beach chair, while sipping a martini ~ F. The saying "BE EXCELLENT TO EACH OTHER" ..., (a) brick
“sushi”, “corn” that is on his laptop keyboard. The wombat is wearing a white  wall and alien (b) driftwood. (c) old wooden boat with reflection.
panama hat and a floral Hawaiian shirt. Out-of-focus palm trees  (d) stained glass. (See text for full prompts.)

in the background. DSLR photograph. Wide-angle view.



G. Three-quarters front view of a X Y Z coming around a curve in

a mountain road and looking over a green valley on a cloudy day.
DSLR photograph. X € {blue, red, yellow}, Y € {1977, 1997,
2017}, Z € {Porsche 911, Corvette, Ford F-150}

H. A raccoon wearing formal clothes, wearing a tophat and hold-
ing a cane. The raccoon is holding a garbage bag. Oil paint-
ing in the style of X. X € {“Rembrandt”, “Vincent Van Gogh”,

s e » o«

“Hokusai”, “pixel art”, “pointillism”, “abstract cubism”, “Egyp-

traditional Chinese painting”, “Mad-

» o«

tian tomb heiroglyphics”,
hubani art”}

L. A photo of an Athenian vase with a painting of X playing Y in
the style of Egyptian hieroglyphics. X € {“pandas”, “toucans”,

“pangolins”}, Y € { “tennis”, “soccer”, “basketball”}



PARTI

MS-COCO FID ({)

LN-COCO FID ({)

Approach Model Type

Zero-shot Finetuned Zero-shot Finetuned
Random Train Images [10] - 2.47 -
Retrieval Baseline - 17.97 6.82 33.59 16.48
TReCS [46] GAN - - - 48.70
XMC-GAN [47] GAN - 9.33 - 14.12
DALL-E [2] Autoregressive ~28 - - -
CogView [3] Autoregressive 211 - - -
CogView?2 [61] Autoregressive 24.0 ) - -
GLIDE [11] Diffusion 12.24 - - -
Make-A-Scene [10] Autoregressive 11.84 7.55 - -
DALL-E 2 [12] Diffusion 10.39 - - -
Imagen [13] Diffusion 7.27 - - -
Parti Autoregressive 7.23 3.22 15.97 8.39

Table 5: Comparison with previous work on the MS-COCO (2014) [16] and Localized Narratives
(COCO split) [29] validation sets. When available, we report results for both zero-shot and finetuned
models. Retrieval models either perform retrieval over our training set (“zero-shot”), or the respective
MS-COCO and LN-COCO training sets (“finetuned”). Parti samples 16 images per text prompt and
uses a CoCa model to rank the outputs (Section 2.4). Similar to DALL-E 2 [12], we use guidance
scale 1.2 for all above results. We report zero-shot FID score of other model sizes in Figure 9.
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* Architectures

« Self-supervised learning

* Autoregressive text-to-image generation
 Trends



Trends

 Architectures
 Unification of tasks, datasets, modalities: “foundation models”

« Availability of increasingly powerful and reliable high-level
primitives



Hybrid of CNNs and transformers?

/ patchify (P)stem ) Original ViT (baseline, termed ViT,):

o JSensitive to lr and wd choice

o Converges slowly
o Works with AdamW, but not SGD
o Underperforms sota CNNs on ImageNet

91 °‘P!115
‘AU0D QX9
PEOH-IINA

. _4

/ convolutional (C) stem \ / transformer block (L-1) \ Ours (terme E 87y R time)'
C .

v Robust to lr and wd choice

v’ Converges quickly

v’ Works with AdamW, and also SGD
) v’ Outperforms sota CNNs on ImageNet

opiys
303

X

=
EES
‘AU0D [X]

uonuany
PEIH-BMA

cio]
‘AU0D

\stem flops = 1 transformer block/ \

T. Xiao et al. Early convolutions help transformers see better. NeurlPS 2021



https://papers.nips.cc/paper/2021/file/ff1418e8cc993fe8abcfe3ce2003e5c5-Paper.pdf

Beyond transformers?

e
| Skip-connections Skip-connections Mixer Layer 1
1 1
I Channels !
I = Patches y - MLP 2 Y > 1
: Z > o = —(MLP1 }—» £ MLP 2 > :
Z > g E —{ MLP 1 }—» /:r\ z MLP 2 =
I 5> g\ A5 - (MLP 1 }—p 5 MLP 2 !
1 z > - O —( MLP1 }—p = MLP 2 | 1
I - ~ MLP2 }— 1
e e e m e e e e m e e e o = e e = = = = = = e = = = = o e e = = = e e = == J
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Fully-connected

Global Average Pooling

[ )
B

N x (Mixer Layer)
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Per patch Fully- conncc(cd
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Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

|. Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision. NeurlPS 2021



https://papers.nips.cc/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
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Or completely back to CNNs?

ConvNexXt |

Swin Transformer
(2021)

ResNet Petl
2020
(2015) ( )

ImageNet-1K Trained

ConvNeXt
Swin Transformer
ViT (2021)
(2020)
SR L
4 8 16 256 GFLOPs

Figure 1. ImageNet-1K classification results for e ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here
take 224%/384% images respectively. ResNet and ViT results were
obtained with improved training procedures over the original papers.
We demonstrate that a standard ConvNet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.

ImageNet-22K Pre-trained

. Liu et al. A ConvNet for the 2020s. CVPR 2022



https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper.pdf

Back to CNNs?

n + N n
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: Figure 2. We modernize a standard ConvNet (ResNet) towards
® foo) the design of a hierarchical vision Transformer (Swin), without
o % = g ;‘; g § “T’ ’; "T’ r 3 g é’ g g m oM ':\ introducing any attention-based modules. The foreground bars are
- = 1 w A% -~ g X . . . .
Q 5 .2 2 B B 2 QU W N . 6 ¥ e 1 6o = o model accuracies in the ResNet-50/Swin-T FLOP regime; results
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Ty T 2 8 8 8 ¢ £ & F < ) - ES hatched bar means the modification is not adopted. Detailed results
© | =| | | E|E T p;_a | é for both regimes are in the appendix. Many Transformer archi-
p c - % - = c tectural choices can be incorporated in a ConvNet, and they lead
0 25 P o 2 g0 o5 o . .
(O 89 2 5 = qE) S O to increasingly better performance. In the end, our pure ConvNet
. =0 P Z § 38 20 model, named ConvNeXt, can outperform the Swin Transformer.
o

Z. Liu et al. A ConvNet for the 2020s. CVPR 2022



https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper.pdf

Back to CNNs?
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Z. Liu et al. A ConvNet for the 2020s. CVPR 2022


https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper.pdf

ConvNeXT v2

Backbone Method #param PTepoch  FT acc.
ViT-B BEiT 88M 800 83.2
ViT-B MAE 88M 1600 83.6
Swin-B SimMIM 88M 800 84.0
ConvNeXt V2-B  FCMAE 89M 800 84.6
ConvNeXt V2-B  FCMAE 89M 1600 84.9
ViT-L BEiT 307M 800 85.2
ViT-L MAE 307M 1600 859
Swin-L SimMIM 197M 800 85.4
ConvNeXt V2-. FCMAE 198M 800 85.6
biersrchieal plain ConvNeXt V2-L FCMAE 198M 1600 85.8
encoder decoder ViT-H MAE 632M 1600 86.9
Swin V2-H SimMIM 658M 800 85.7
Figur‘e 2. Our FCMAE framework. We introdu.ce a fully con- Ezzzgzg ziﬁ ngii Zzgx 1860000 22:2
volutional masked autoencoder (FCMAE). It consists of a sparse
convolution-based ConvNeXt encoder and a lightweight Con- Table 4. Comparisons with previous masked image modeling
vNeXt block decoder. Overall, the architecture of our autoencoder approaches. The pre-training data is the IN-1K training set. All
is asymmetric. The encoder processes only the visible pixels, and self-supervised methods are benchmarked by the end-to-end fine-
the decoder reconstructs the image using the encoded pixels and tuning performance with an image size of 224. We underline the
mask tokens. The loss is calculated only on the masked region. highest accuracy for each model size and bold our best results.

S. Woo et al. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders. CVPR 2023



https://openaccess.thecvf.com/content/CVPR2023/papers/Woo_ConvNeXt_V2_Co-Designing_and_Scaling_ConvNets_With_Masked_Autoencoders_CVPR_2023_paper.pdf

Trends

 Architectures
 Unification of tasks, datasets, modalities: “foundation models”

« Availability of increasingly powerful and reliable high-level
primitives



Segment Anything Model

validTmask ,—> annotate —l

lightweight mask decoder model data
T L v —
model
| imaﬁc Segment Anything 1B (SA-1B):
encoder
i — T * 1+ billion masks i
e © D cat with cpncodir * 11 million images
° black ears * privacy respecting
T ) T * licensed images

segmentation prompt image prompt image

(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation task, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.

A. Kirillov et al. Segment Anything. arXiv 2023
https://segment-anything.com/



https://arxiv.org/pdf/2304.02643.pdf
https://segment-anything.com/

Visual Programming

Visual i C Visual Question il Natural Language Image Editing
IMAGE Prediction: IMAGEL
Question: Are there both ties and glasses in the picture?
Program:
visual / BOXB=Loc(image=IMAGE, object=‘ties’)
Prediction Rationale ANSHER@=Count (box=BOX8)

BOX1=Loc(image~=IMAGE, object=‘glasses’)

ANSNER1=Count  box=BOX1)

ANSHERZ=Eval(“‘yes’ if {ANSWER@} > @ and {ANSWER1} > @ else ‘no’”)
RESULT=ANSWER2

Prediction: no

Instruction: Hide Daniel Craig with 8) and Sean Connery with ;)

Progran:

Natural Language Visual Reasoning 0810-FacaDet (inaga=IMAGE)

08]1=Select(inage=IMAGE, object=0BJ8, query=‘Daniel Craig’, category=None)
IMAGEB=Enoji (image=IMAGE, object=0B)1, emojis‘smiling face_with_sunglasses’)

LEFT:

Progran

Interprater 0BI2-Select(inage=IMAGE, object=0BJ@, query=‘Sean Connery’, category: None)
IMAGE1=Enoji(inage=IMAGE®, object=0812, enoji=‘winking face’)
Y RESULT=IMAGEL
g > INAGE:: Prediction: IMAGED
l‘e‘v’e‘l"" 1 Statement: The left and right image contains a total of six people and two boats. .
Program:
ANSWER@=Vqa (inage=LEFT, question‘How many people are in the image?’)
ANSWER1=Vqa(inage=RIGHT, question=‘How many people are in the image?’)
ANSWER2<Vqa (inage=LEFT, question=‘How many boats are in the image?’)
ANSWER3=Vqa(inage=RIGHT, question=‘How many boats are in the image?’)
ANSWER4=Eval( ‘{ANSWER®} + {ANSNER1} == 6 and {ANSWER2} + {ANSWER3} == 2’) 1
RESULT=ANSWER4 Instruction: Replace desert with lush green grass
Prediction: False Program:
0B)@=Seg(inage=TMAGE)
Factual Knowledge Object Taggi 0B)1=Select(inage=IMAGE, object=0BJ8, querys‘desert’, categorysNone)
c,:::i:::.— BE DR oRere place(image=INAGE, object=0811, prompt=‘lush green grass’)
2 IMAGE: Prediction: IMAGEG RESULT=IMAGE®
TMAGE : Prediction: IMAGE®
Input
Inage(s)
Natural Language . -
Instruction Instruction: Tag the 7 main characters on the TV show Big Bang Theory
Program: Instruction: Create a color pop of Barack Obama (person)
0BJ@=FaceDet ( inage=IMAGE) Program:
In-context LISTe=List(query=‘main characters on the TV show Big Bang Theory’, max=7) 0BI0=Seg(image=INAGE)
instruction-progran 0BJ1=Classify(image=IMAGE, object=0B1@, categories=LIST8) 0BJ)1=Select(image=IMAGE, object=088, query=‘Barack Obama’, category=‘person’)
IMAGED«Tag(inage=IMAGE, object=0BJ1) IMAGEB=ColorPop(inage=IMAGE, object=0811)
RESULT=INAGE® RESULT=IMAGE®

Figure 1. VISPROG is a modular and interpretable neuro-symbolic system for compositional visual reasoning. Given a few examples
of natural language instructions and the desired high-level programs, VISPROG generates a program for any new instruction using in-
context learning in GPT-3 and then executes the program on the input image(s) to obtain the prediction. VISPROG also summarizes the
intermediate outputs into an interpretable visual rationale (Fig. 4). We demonstrate VISPROG on tasks that require composing a diverse
set of modules for image understanding and manipulation, knowledge retrieval, and arithmetic and logical operations.

T. Gupta and A. Kembhavi. Visual Programming: Compositional visual reasoning without training. CVPR 2023



https://arxiv.org/pdf/2211.11559.pdf

Visual Programming

 Modules supported in VisProg

|mage FaceDet
Understanding OWL-ViT DSFD (pyp1) MaskFormer CLIP-ViT CLIP-ViT VILT

Replace ColorPop
Stable PIL.convert() PIL.GaussianBlur() PIL.rectangle() Augly (pypi)
Image Diffusion cv2.grabCut() cv2.grabCut() PIL.text()

Manipulation
CropRight CropAbove CropBelow
PIL.crop() PIL.crop() PIL.crop() PIL.crop() PIL.crop()
Knowledge Arithmetic
Retrieval GPT3 & Logical eval() len() dict()




Visual Programming

* Image editing with natural language

IMAGE
Instruction: Replace the ground
with white snow and the bear
with a white polar bear

0BJO=Seg(

image=IMAGE)

OBJ1=Select(
image=IMAGE,
object=0BJ0O,
query=‘ground’)

IMAGE©@=Replace(
image=IMAGE,
object=0BJ1,
prompt=‘white snow’)

0BJ2=Seg(
image=IMAGE®Q)

0BJ3=Select(
image=IMAGE®,
object=0BJ2,
query=‘bear’)

IMAGE1=Replace(
image=IMAGE®Q,
object=0BJ3,
prompt=‘white polar bear’)




Visual Programming

 Reasoning about image pairs

Statement: At least three

animals are in a flowered field LEFT

LEFT:

RIGHT

RIGHT:
2 € ANSWER@=Vqa(

image=LEFT,
question=‘How many animals
are in the flowered field?’)

1 <& ANSWER1=Vqa(
image=RIGHT,
question=‘How many animals
are in the flowered field?’)

Prediction: True True € ANSWER2=Eval(expr=‘{ANSWER®} + {ANSWER1} >= 3?’)
=Eval(expr=2 + 1 >= 3?°)




Visual Programming

« Example results

Replace Leonardo DiCaprio Create a color pop of the Replace Anne Hathaway with
with Leonardo DiCaprio woman in blue and the woman in Emma Watson and Meryl Streep Replace the desert Replace the couch with a
wearing sunglasses red and blur the background with Jennifer Lawrence by sandy beach plush blue couch

Tag the women leaders of Germany,

Tai d N z
alvary, and New Zealand Tag the three female lead Tag these Scandinavian flags Tag the painting of Girl with a Pearl

characters from Friends series with their countries Earring with its painter

way (95.3)

Johannes Vermeer(1.0) e oo oo -coxné |



ViperGPT

Query q Visual Input =

“Which pet is in
the top left?”

l

ViperGPT Generated Code 2
def process_query_function(image):
image_patch = ImagePatch(image)
COde LLM pets = image_patch. find("pet")
7T pets_sorted = ...

return result

AP ificati
Specification Code Execution ¢

(image) -> torch.Tensor: Python Interpreter

def i-::t:(image,Vobject_name) -> bool: +

(text) -> text:

API Implementation

Result: “shiba Inu”

S. Menon et al. ViperGPT: Visual Inference via Python Execution for Reasoning. arXiv 2023



https://arxiv.org/pdf/2303.08128.pdf

ViperGPT

Query: How many muffins can each kid have for it to be fair?

Generated Code

def execute_command(image):
image_patch = ImagePatch(image)
muffin_patches = image_patch.find("muffin")
kid_patches = image_patch. find("kid")
return str(len(muffin_patches) // len(kid_patches))

Execution kid_patches =
image_patch. £ind( "kid")

muffin_patches =
image patch find('mffin 3

» len(muffin_patches)=8
> teniid puicre 2
- - »8//2 = 4
v/} Result:4

def execute_command(image):
image_patch = ImagePatch{image)
drink_patches = image_patch.find("drink")
for drink_patch in drink_patches:
drink_name = drink_patch.simple_guery("What is this?")
alcoholic = 1lm mew(f"Does the {drink_name} have alcohol?")

if alcoholic == "no"
return drink _patch
return None

isinlat i 68 ) drink name = “tullamare dew’
{ |L. »alcoholic = ‘yes’

»drink_name = ‘bacardi’
* »alcoholic = ‘yes’

»drink_name = ‘gin’
»alcoholic = ‘yes’

»drink_name = ‘dr pepper’
"\‘ »alcoholic = ‘no”

Query: What would the founder of the brand of the car on the left say to the founder of the brand of the car on the right?

def execute_command(image):
image_patch = ImagePatch(image)
car_patches = image_patch. find(“car™)
car_patches.sort(key=lambda car: car.horizontal_center)
left_car = car_patches[@]
right_car = car_patches[-1]
left_car_brand = left_car.simple_guery("What is the brand of this car?")
right_car_brand = right_car.simple_query("what is the brand of this car?")
left_car_founder = Llm_query(f"Wwho is the founder of {left_car_brand}?")
right_car_founder = Lim_guery(f“Who is the founder of {right_car brand)?")

return Llm_query(f*what would {left_car_founder} say to {right_car_founder}?")

car_patches =
:unage_patch find("car" ) 'Y

' » left_car_brand="lamborghini’
F_ — ®! | »right_car_brand=‘ferrari’
e - :

» left_car_founder=‘Ferruccio Lamborghini®
car_patches.sort(.. | »right_car_founder='Enzo Ferrari’

'-‘1‘ = n '
—
'

Result: “Ferruccio Lamborghini might say, ‘It's been an honor to be a rival of yours for so many years, Enzo.
May our cars continue to push each other to be better and faster!" "




